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ABSTRACT

Scientific software is code written by scientists for the purpose of doing research. While

the results of this software development have been widely published, there has been relatively lit-

tle publication of the development of this software. There have been even fewer publications that

look at the software engineering aspects of scientific software development and fewer still that

have suggested software engineering techniques that will help scientists develop the software that

is relied on for much of our modern knowledge. The software engineers who have studied the

development processes of scientific software developers agree that scientists would be able to pro-

duce better software if they had the knowledge and familiarity to use specific software engineering

practices. The primary focus of this dissertation is to provide that knowledge to scientific software

developers in order to better enable them to produce quality software as efficiently as possible.

In order to achive this focus, this dissertation has three aspects. First, this dissertation provides

a literature review of the claims that have been made in the software engineering and scientific

software literature culminating in a list of claims about software engineering practices. Scientific

software developers can use this list to find practices they are unaware of that should prove useful

to their development. Additionally, software engineers can use the list to help determine what prac-

tices need support for the scientists to be able to take advantage of them. Second, this dissertation

provides a series of surveys that capture the current state of software engineering knowledge in

the scientific software development community. The results of these surveys show that scientific

software developers are unfamiliar with many of the practices that could help them address their
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most challenging issues. Third, this dissertation provides examples that show, with support from

software engineers, scientific software developers can take advantage of practices that have proven

useful in traditional software engineering and increase the quality of their work without requiring

an overwhelming amount of extra work.
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Chapter 1

INTRODUCTION

Scientists and engineers use software models to replace dangerous or expensive experimen-

tation and to conduct studies that would not be possible otherwise. The following text provides

examples from three scientific domains that frequently use software models: climate science, earth

science, and nuclear science. In climate science, software models allow meteorologists to predict

future weather conditions and dangerous weather events. Without these models, meteorologists

are limited to manually examining historical weather patterns to extrapolate predictions about fu-

ture weather. This historical approach is time-intensive, which is problematic in the face of the

rapid pace of changing weather conditions. Additionally, the historical approach primarily gives

general predictions, which means it is likely less accurate than the results given from the models.

A different problem emerges in other fields, for example many of the phenomena studied in earth

science occur so slowly that it is inefficient to experiment with them physically. Software models

allow earth scientists to speed up the effects of their experiments. Yet another problem emerges in

the field of nuclear science: the problem of safety. It is much safer for scientists to simulate the

effects of nuclear reactions than to conduct a physical experiment.

As these examples highlight, scientists and engineers are increasingly reliant on the results

of software simulations to inform their decision-making process. Because of this reliance, it is vital

for the software to return accurate results. While the correctness of the science behind the software

is the most important factor in the accuracy of results, the correctness and quality of the software is

1
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also extremely important. The field of software engineering provides tools and methods that help

developers increase and verify software quality.

1.1 Problem Statement

Because a scientific or engineering problem must be sufficiently complex to require the de-

velopment of software, developers often need advanced technical training, most frequently a PhD,

in the area to understand the needs of the problem. This situation differs from a traditional soft-

ware development environment such as where a high-level of domain knowledge is not as strictly

required. This requirement of detailed domain knowledge frequently means that a scientific soft-

ware developer lacks the software development knowledge that a “traditional” software developer

would have. In turn, various aspects of software quality may be lower. Software engineering

provides development methodologies, verification, validation, and testing techniques as well as

version control and issue tracking tools that have the potential to increase the quality of scientific

software. However, it appears that the prevalence of their use in scientific software is relatively

low.

In addition to the software quality problems, scientists and engineers have a problem with

productivity. According to Faulk et al., even though the speed of computers is rapidly increasing,

it is becoming more difficult for scientists to actually do useful work. Faulk says that the reason

for this situation is that “the dominant barriers to productivity improvement are in the software

processes.” In other words, the development approach that is primarily used in scientific software

contains bottlenecks. Faulk also claims that these bottlenecks cannot be removed “without fun-

damentally changing the way scientific software is developed.” [9] A major strength of software

engineering is that it can increase productivity. Therefore, low productivity is another issue in

which software engineering techniques can help scientific software developers.

2
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Scientific software projects have a common set of characteristics which, according to Basili

et al. [2], provide a source of knowledge that is essential to understand the claims made about the

application of software engineering to scientific software projects.

First, many scientific software developers learn software development from other scientific

software developers rather than via a formal software engineering education [7]. Unfortunately, the

other scientific software developers also tend to lack formal software engineering training. Because

scientific software developers do not have formal training, their ideas of what constitutes software

engineering is limited. This lack of training means that they are likely unaware of techniques they

could use that would allow them to have a much greater level of control over the quality of their

code. Even when scientific software developers are familiar with certain software engineering

techniques, they may not know how to properly apply them, leading them to decide that the cost

of using software engineering techniques outweighs the benefits they provide.

Second, many of the software projects are not initially designed to be large, but do become

large after initial trials prove successful [2]. Because the programs are not intended to be large,

scientific software developers often do not take care to ensure that their code is easy to maintain.

When scientific software developers have to later modify their code to add new features, these

modifications require more effort than they should.

A final characteristic of scientific software is that it is generally used internally, that is either

by its creator or by another member of the creator’s research group [2]. Because the software is

used internally, the belief is that understandability by external developers is less important. As

a result, the software is often difficult to read and poorly commented. These practices lead to

software that is less maintainable, which is problematic if someone new joins the team or if one of

the primary developers stops working on the code for some period and then returns to it.

3
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It is important to understand that there is not one monolithic community of scientific soft-

ware developers. According to Basili et al. [2], there are three primary variables that characterize

the development of software for any individual researcher or group of researchers. The first vari-

able is team size. In scientific software, the size of a team is usually either a single researcher who

serves as his own developer or a large group. According to Basili, the large groups tend to consist

of multiple groups that may not even be co-located.

The second variable is the useful lifetime of the software. Software that is only expected

to be executed once or twice does not require as much formal software engineering or need as

much optimization as software that is going to be used multiple times, i.e. a scientific simulation

or a scientific library. In this case, formal engineering is not as important because the additional

work required is not justified by the lifetime of the software. Additionally, when software is only

executed once or twice, the effort required to optimize its performance can easily overwhelm the

performance increase this effort generates.

The final variable is the intended users of the software. The users can be internal, external,

or both. In the case of internal users, the developers do not tend to care as much about the quality

of the user interface because they will be using the software themselves. When the software is

going to be used externally, the quality of the user interface is more important. Additionally, when

the software is going to be modified by external developers, it must be readable and maintain-

able. Cases where both internal and external users are supported result in an additional layer of

complication because multiple software versions must be maintained.

The previous discussions all lead into the following problem statement that my dissertation

will address. Scientific software developement has many of the same needs as traditional software

development. Therefore, scientific software developers would be helped by adopting the techniques

4
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that have proven to be effective in traditional software engineering development. However, because

there are many differences in the developers themselves, these techniques will need to be tailored

to fit the scientific software context.

1.2 Study Rationale

Traditional software development focuses on fulfilling the needs of a customer. In particu-

lar, software engineers focus on a process that has been shown to lead to the creation of software

that better fulfills those needs. This focus on the process has led software engineers to emphasize

quality of the code itself. Scientific software, on the other hand, exists to answer scientific or en-

gineering questions that are difficult or impossible to answer experimentally due to constraints on

time, expense, or the danger of performing the experiment. Because the most important goal for

scientific software developers is the creation of new scientific knowledge, the relative emphasis

scientific software developers place on various software quality attributes (i.e. correctness of code,

maintainability, and reliability) has been historically lower than that given by traditional software

developers [8]. Furthermore, there is no guarantee that software techniques will work for scientific

software development without modification. In fact, Segal, et al. suggest that software techniques

would have to be tailored for use in scientific software development [13].

In software that will be used for an extended period of time, the most expensive part of

development is in the maintenance stage. In some cases, this stage can take up as much as 90%

of the total effort devoted to a software project. While many scientific software projects are small

projects that serve as more proof-of-concept than long term software development efforts, there

are also a large number of projects, such as library development or searches for a new material,

that are continually developed over many years. These projects, just as with traditional software

projects, will necessarily undergo a number of changes in their lifecycles. Because of this need

5
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for continued change, the developers will be required to perform maintenance tasks on the soft-

ware. Software engineers have determined that many factors contribute to the ease of maintaining

software, including readability, preservation of knowledge across a team, and testing.

In addition to the long-term projects mentioned previously, scientific software developers

frequently explore many similar phenomena. The development process for these similar projects

would be simplified if they could more easily reuse software. Many of the same factors that

contribute to maintainability also contribute to reusability: readability, preservation of knowledge,

and testing.

1.3 Hypotheses

The specific areas of scientific software quality this dissertation seeks to improve are main-

tainability and reusability. As these two qualities greatly affect the cost of developing software

in traditional software domains [3, 4], this dissertation hypothesizes that the same would prove

true in the scientific software domain. In order to show that these qualities will decrease the cost

to scientific software developers, this dissertation will look at the three sub-areas of readability,

preservation of knowledge, and testing. Readability, preservation of knowledge, and testing are

subareas of both maintainability and reusability. Improvement in each of these areas has been

shown to improve both maintainability and reusability of traditional software [1, 5, 10, 14]. In

traditional software engineering, code reviews have been found to have a significant impact on the

readability of software and the preservation of knowledge among members of the development

team [1]. In order to show that these techniques will have similar effects on scientific software

development, This dissertation covers a number of hypotheses:

• The use of peer code reviews will significantly improve the readability of scientific software.

6



www.manaraa.com

• The use of peer code reviews will significantly increase the preservation of knowledge across

a scientific software development team.

• The use of uniform coding standards across a scientific software development team will

increase the readability of scientific software.

• The use of regression and integration testing in concert will provide a means for scientific

software developers to show that their software is “more .”

1.4 Methodology

Because scientific software development has many of the same needs as traditional soft-

ware development, this dissertation shows that software engineering techniques can be applied or

modified to increase the maintainability and reusability of scientific software. In particular, this

dissertation shows that peer code reviews, regression testing, and integration testing provide a no-

ticeable increase in the quality of scientific software without requiring a large amount of additional

work by scientific software developers. In order to show that these improvements can be obtained

efficiently, this dissertation focuses on a number of techniques that have been shown to increase

the qualities that make software maintainable and reusable. The most important criterion for both

of these characteristics is “correctness.” The correctness of the software is particularly important

in scientific software development because the expected output of the software is often unknown.

The more confident a scientific software developer can be in the correctness of his/her software

implementation of the underlying algorithm, the more confident he/she can be in the correctness

of that algorithm. In addition to being “correct,” in order to re-use software, it must be modular

enough that useful portions of the software can be used without needing to keep the parts of the

software that do not apply to the new problem.
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This dissertation is composed of three articles used to show that software engineering tech-

niques can increase the maintainability and reusability of Computational Science and Engineering

software as follows:

1. Article 1 - Literature Review to determine the views of the usefulness of software engi-

neering techniques for scientific software development.

2. Article 2 - Surveys to determine the current state of software engineering knowledge and

the use of software engineering practices in scientific software development.

3. Article 3 - Case Studies: (1) Peer code review in scientific software development and (2)

Integration and Regression testing in scientific software development.

The first article describes the results of a systematic literature review conducted to un-

derstand the views of the scientific and software engineering communities on the usefulness of

software engineering practices and tools for scientific software development. This literature re-

view examined papers from both the scientific and software engineering domains and the claims

made in those papers. The literature review provided a list of software engineering practices, the

claims that had been made about the usefulness and effectiveness of those practices for scientific

software development, and an analysis of the types of evidence used to support those claims. This

last analysis showed that many of these claims have not been supported with evidence stronger

than personal experience, which means that further analysis is needed.

While the literature review gave a broad overview of the claims from the literature, it did

not provide as useful an overview of the practices used by the developers. Additionally, many

of the claims need more extensive evaluation beyond personal experience. Therefore, in order to

understand the current state of software engineering knowledge and the use of software engineering
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practices in scientific software development, the second article describes the results from a series

of surveys of scientific software developers. These surveys asked the developers to rate their

current knowledge and use of a number of fundamental software engineering techniques. It also

asked them what they saw as the major issues facing scientific software development in the future.

The results showed that the developers had, in general, a lack of familiarity with the software

engineering practices that support the testing and verification & validation processes important for

ensuring the quality of their software. In order to address this lack of familiarity, this dissertation

looks specifically at the practices of peer code review, integration testing, and regression testing.

The results of the literature review and the surveys indicated that developers faced issues

specifically with maintainability and reusability of scientific software. To address these issues, the

third article describes the results of informal case studies that sought to teach scientific software

developer teams to utilize peer code review and provide a semi-automated tool that the teams could

use to perform integration and regression testing on their software while requiring minimal extra

effort on their part. The creation of this tool utilized open-source scientific software projects. The

use of open source projects is important because many of these projects are standard libraries that

are used in a wide range of scientific software projects. If the tool did not support these projects,

then it would be of limited use to the scientific software community. These case studies showed

that, with support from the software engineering community, scientific software developers could

take advantage of the software engineering practices of peer code review, integration testing, and

regression testing.

1.5 Summary of Findings

The results of this dissertation will prove beneficial to members of the scientific develop-

ment community as they seek to maintain existing large programs or develop new programs. The
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empirical evidence shown by having scientific software development teams use the software en-

gineering techniques will help researchers evaluate the effectiveness of those techniques for their

own use. The process of implementing these specific techniques in a scientific software develop-

ment context will provide insight as to how much tailoring is required to make software engineering

practices work in the context of scientific software development teams. The dissertation shows that,

while scientific software developers recognize they would benefit from using software engineering

practices, those practices that support verification & validation and testing have not been widely

adopted. This lack of adoption is important because these areas have been repeatedly identified

by both scientists and software engineers as some of the most difficult challenges facing scientific

software development. Furthermore, this dissertation shows that scientific software developers

were generally unable to evaluate their overall knowledge of software engineering as shown by

their knowledge of specific software engineering practices. Finally, the dissertation shows that

the software engineering practices of peer code reviews, integration testing, and regression test-

ing are effective at addressing the issues of maintainability and readability in scientific software

development.

1.6 Outline of Dissertation

This dissertation is divided into five chapters. Chapter 2 presents a literature review that

examined the claims software engineers and scientific software developers have made about the

usage of software practices in scientific software development. Chapter 3 presents the results

of a pair of surveys that characterize the current status of the knowledge and usage of software

techniques in scientific software development. Chapter 4 presents two examples showing that the

software techniques of peer code review, integration testing, and regression testing are useful in

the context of scientific software development teams. Chapter 5 provides an overview of the major
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conclusions of my research, a plan for future work, and a listing of the publications generated by

this dissertation.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

Scientists and engineers often use computational modeling to replace (or augment) physi-

cal experimentation. For the remainder of this paper we will refer to the software created by these

scientists and engineers as scientific software. The following examples help to illustrate some of

the key reasons why computational models are becoming increasingly important in science and

engineering domains. First, computational models allow scientists to react to events in near real-

time. In meteorology, computational models allow scientists to adjust their forecasts based upon

current conditions and analyze the potential effects of changing conditions. Without such models,

meteorologists would have to extrapolate from historical data, which is time-consuming and too

slow for real-time forecasts. Second, computational models allow scientists to study phenomena

that occur at a very slow pace in reality. In climate science or geology, the slow pace of many nat-

ural phenomena make it infeasible for scientists to rely solely on empirical observations to draw

conclusions. Computational models allow scientists to study these phenomena at a much more

rapid pace. Third, computational models allow scientists to study phenomena that are too precise

for manual observation. In astronomy and astrophysics, the combination of software models and

advances in digital imaging systems have combined to allow scientists to discover new solar sys-

tems that are too faint for human detection. Finally, computational models allow scientists to study

phenomena that are too dangerous to study experimentally. In astrophysics, it is much safer for
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scientists to use computational models to explore the effects of various types of nuclear reactions

compared with conducting physical experiments.

As these examples highlight, scientists and engineers are increasingly reliant on the results

of computational modeling to inform their decision-making process. Because of this reliance, it

is vital for the software to return accurate results in a timely fashion. While the correctness of the

scientific and mathematical models that underlie the software is a key factor in the accuracy of

results, the correctness and quality of the software that implements those models is also highly im-

portant. Additionally, the software’s performance must be fast enough to provide results within the

desired time window. To complicate these requirements, scientific software is typically complex,

large, and long-lived. The primary factor influencing the complexity is that scientific software

must conform to sophisticated mathematical models [8]. The size of the programs also increases

the complexity, as scientific software can contain more than 100,000 lines of code [10, 14]. Fi-

nally, the longevity of these projects is problematic due to developer turn-over and the requirement

to maintain large existing codebases while developing new code. These characteristics of scientific

software development are explored forward in Section 2.2.

In the more traditional software world, software engineering researchers have developed

various practices that can help teams address these factors so that the resulting software will have

fewer defects and have overall higher quality. For example, documentation and design patterns

help development teams manage large, complex software projects. Version control is useful in

long-lived projects as a means to help development teams manange multiple software versions and

track changes over time. Finally, peer code reviews support software quality and longevity, by

helping teams identify faults early in the process (software quality) and by providing an avenue for

knowledge transfer to reduce knowledge-loss resulting from developer turn-over (longevity).
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Furthermore, software engineering practices are important for addressing productivity prob-

lems in scientific software. Even though the speed of the hardware is rapidly increasing, the ad-

ditional complexity makes it more difficult for scientists to be productive developers. According

to Faulk et al, the bottlenecks in the scientific development process are the primary barriers to

increasing software productivity and these bottlenecks cannot be removed without a fundamental

change to the scientific software development process [16].

The previous paragraphs highlighted the software quality and productivity problems that

scientific software developers face. Because developers of more traditional software (i.e. busi-

ness or IT) have used software engineering practices to address these problems, it is not clear

why scientific software developers are not using them. Throughout the literature, various CSE

researchers and software engineering researchers have drawn conclusions about the use of soft-

ware engineering practices in the development of scientific software. To date, there has not been a

comprehensive, systematic study of these claims and their supporting evidence. Without this sys-

tematic study, it is difficult to picture the actual effectiveness of SE practices in scientific software

development. Based on our own experiences interacting with scientific software developers, we

can hypothesize at the outset that the relatively low utilization of software engineering practices is

the result, at least in part, of two factors: 1) the constraints of the scientific software domain and

2) the lack of formal training of most scientific software developers.

This paper has three primary contributions.

1. A list of the software engineering practices used by scientific software developers;

2. An evaluation of the effectiveness of those practices; and

3. An evaluation of the evidence used to evaluate effectiveness.
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Therefore, the goal of this paper is to analyze information reported in the literature in order to

develop a list of software engineering practices researchers have found to be effective and a

list of practices researchers have found to be ineffective. In order to conduct this analysis, we

performed a systematic literature review to examine the claims made about software engineering

practices in the scientific software literature and the claims made in the software engineering lit-

erature about the usefulness of software engineering practices for scientific software development.

In this paper, we define a claim as: any argument made about the value of a software engineering

practice, whether or not there is any evidence given to support the argument. In particular, we are

interested in identifying those claims that are supported by empirical evidence.

The remainder of this paper is organized as follows: Section 2.2 provides background on

previous research about SE for scientific software. Section 2.3 describes the research methodology

used in this systematic literature review. Section 2.4 reports the scientists’ and software engineers’

claims about SE for scientific software.

2.2 Background

Traditional software development focuses on the process of developing software to fulfill

the needs of a customer. This focus on the process has led software engineers to emphasize quality

of the code itself. Scientific software, on the other hand exists primarly to provide insight into

important scientific or engineering questions that would be difficult to answer otherwise. Because

the goal for scientific software developers is the creation of new scientific knowledge, the em-

phasis placed on software quality (i.e. correctness of code, maintainability, and reliability) has

been historically lower than seen in more traditional software engineering [8]. Furthermore, even

for developers who place a great deal of emphasis on software quality, it is likely that at least
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some existing software engineering practices must be tailored to be effective in scientific software

development [61].

The remainder of this paper focuses on the suitability of existing software engineering prac-

tices to address the issues facing scientific software developers. To provide some background, it

is important to describe the scientific software community. While the scientific software commu-

nity is not monolithic, Basili et al. [5] enumerated three characteristics that are common across

the majority of the community. In addition to these common characteristics, Basili et al. [5] also

enumerate three variables that differentiate projects within the scientific software community. The

following subsections describe the common and variable aspects, respectively.

2.2.1 Common Characteristics of Scientific Software Development

These characteristics provide a backdrop that is essential to understand the claims that have

been made regarding scientific software development.

1. Source of software development knowledge - Rather than obtaining their software devel-

opment knowledge via a traditional software engineering (or computer science) education,

many scientific software developers obtain their knowledge from other scientific developers

(who also lack formal training). This lack of formal training often leaves scientific software

developers blind to much of the field of software engineering that could provide much greater

control over the quality of their code. Additionally, for those software engineering principles

with which they are aware, scientific developers may be unsure of how to tailor and apply

them in their particular environment. Carver et al. [7] also observed this characteristic.

2. Unplanned increase in project size - Rather than expending effort to initially design un-

proven software to be useful on a large scale, scientific software developers typically design

16



www.manaraa.com

their software to be relatively small. Only when the software package finds success in the

community does it begin to grow. As a result, later modifications become increasingly diffi-

cult and error-prone. Hinsen [24] also observed this characteristic.

3. Typical user base - Most scientific software (with the exception of some libraries and large

commercially-available software packages - see item 3b in the next subsection) is used by its

developer or members of the developer’s research group. This internal use leads developers

to discount usability (because they can just fix problems as they arise during use), which in

turn reduces overall maintainability.

2.2.2 Variables Within Scientific Software Development

It is important to understand that there is not one monolithic community of scientific soft-

ware developers. According to Basili et al., [5] there are three primary variables that help de-

velopers better understand how best to integrate software engineering practices into their specific

project.

1. Team size – scientific software projects tend to be developed either by a single developer,

who is typically also the only user, or by a large group of developers, which are often dis-

tributed.

2. Useful lifetime of software – There are two general types of scientific software, with a small

number of projects falling between these two polls:

(a) Kleenex software – intended to be used only once or twice, therefore good software

engineering practices are less important.

(b) Community or library software - intended to be used multiple times, often outside of
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the developer group, therefore requires better software engineering practices to help

ensure its correctness and performance.

3. Intended users of the software –

(a) Internal – software engineering practices are less common because the developers care

less about the maintainability of the software or the usability of the interfaces. Main-

tainability and usability matter less in this case for two reasons. First, the software is

not usually planned to be used for an extended period of time, therefore less effort will

be spent maintaining the software. Second, the software will be used by the people who

developed it, so the interfaces will be used by people who already understand them.

(b) External – software engineering practices are more common because the readability

and maintainability of the code is more important as well as the usability of the user

interfaces. Software intended for external users, on the other hand, is frequently ex-

pected to be used long term. The software will also be used by people who aren’t

already familiar with the interfaces, so the interfaces should be intuitive.

(c) Both – results in an additional layer of complexity because teams must maintain multi-

ple versions of the software (e.g. an internal development version and a stable release

version).

2.3 Methodology

The following subsections describe the steps of the Systematic Literature Review (SLR)

process we followed [38].
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2.3.1 Research Questions

There have been many claims made about how scientists develop software. But as of yet,

there have been no systematic reviews of the literature from both scientific software development

and software engineering to collect and validate those claims. Therefore, the main purpose of this

review is to survey the literature from both disciplines to answer two questions:

1. What claims have researchers made about the usage of software engineering practices in the

development of scientific software?

2. What empirical evidence exists to validate these claims?

2.3.2 Source Selection

In order to gain as much coverage of the software engineering and scientific software do-

mains, we searched the following five databases:

• ACM Digital Library,

• IEEE eXplore,

• ScienceDirect,

• SIAM Publications Online, and

• Google Scholar.

Our initial search string, “scientific software development,” returned an overwhelming number of

results, many of which were irrelevant. The revised search strings, “scientific software develop-

ment” AND “software engineering,” resulted in a more manageable 349 papers. Additionally, in

order to be sure we had found all relevant papers, we repeated the search using each of the terms
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Table 2.1: Inclusion and exclusion criteria
Inclusion Criteria Exclusion Criteria
Paper must be in the scientific software do-
main

Studies not in English

Paper must focus on the development of scien-
tific software

Preliminary Conference Versions of included
journal papers

The development section must mention SE
topics

Study does not make claims about SE topics

Study is a book chapter, introduction, or index

in Table 2.4 in place of "software engineering." These additional search strings resulted in a total

of 718 papers. We conducted this search throughout May 2015.

2.3.3 Study Selection

We used the following steps to reduce those 718 papers down to the most relevant set to

include in the review.

1. De-duplication: Remove any duplicates from the returned papers;

2. Title-based exclusion: Use the title to eliminate any papers clearly not related to the research

focus;

3. Abstract-based exclusion: Use the abstract and keywords to exclude papers not related to the

research focus; and

4. Full text-based exclusion: Read the remaining papers and eliminate any that do not fulfill

the criteria described in Table 2.1.

The de-duplication and title-based exclusion steps eliminated 459 papers, leaving 259. The

abstracts did not contain sufficient information to eliminate any additional papers. Finally, the full

text review allowed us to eliminate 32 papers that did not give enough detail about the develop-

ment of the software and 161 that did not make any claims about software engineering practices.
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Table 2.2: Paper Distribution
Source Count
Computing in Science and Engineering 15
ICSE Workshop on Software Engineering for Computational Science and Engineering 10
IEEE Software 6
IEEE International Conference on Software Engineering 4
ACM-IEEE International Symposium on Empirical Software Engineering and Mea-
surement

3

ACM Conference on Computer Supported Cooperative Work and Social Computing 3
International Conference on Software Testing, Verification, and Validation 2
SIAM Journal on Scientific Computing 2
Empirical Software Engineering 1
IEEE Power Engineering Society Winter Meeting 1
International Journal of High Performance Computing Applications 1
CTWatch Quarterly 1
IEEE International Conference on e-Science 1
Advances in Computers 1
Computer 1
IEEE International Geoscience and Remote Sensing Symposium 1
European Conference on Software Architechture Workshops 1
ACM Conference on Extreme Science and Engineering Discovery Environment: Gate-
way to Discovery

1

IEEE International Workshop on Software Engineering for High Performance Com-
puting in Computational Science and Engineering

1

ACM International Conference on Supporting Group Work 1
SIAM Journal on Matrix Analysis and Applications 1
HPC-GECO/CompFrame Workshop 1
Workshop on Algorithm Engineering and Experiments 1
SIAM Journal on Discrete Mathematics 1
IEEE International Conference on Electro/Information Technology 1

Table 2.2 shows the distribution of publication venues for the 66 papers that made it to the data

extraction step. One paper was published in a non-peer reviewed source, Advances in Computers.

This paper was included as it provided a significant amount of information.

2.3.4 Data Extraction

Table 2.3 shows the items contained in the data extraction form we used to ensure consistent

and accurate gathering of information from each paper. During the data extraction process, the

21



www.manaraa.com

Table 2.3: Data items extracted from all the papers
Data items Description
Identifier Unique Identifier for the paper
Bibliographic Author, year, title, source
Domain The domain of the project the paper is based on
Claims A list of the claims the paper made about various SE techniques
Evidence for Claims A list of the evidence the paper provided to justify their claims about

each technique

first author performed the primary extraction for the review while the second extracted data from

a random sample of 5% of the papers. We then compared the data extracted by each reviewer for

consistency. We found that the data extracted from the samples by the second author was consistent

with the data extracted by the first author. This process is consistent with the process followed in

previous systematic reviews [20, 27, 28, 37, 68].

2.4 Results

In our review of the literature, we used the definitions provided by the IEEE Standard

Computer Dictionary [1] to categorize the claims about the effectiveness of software engineering

practices in scientific software into 11 practices. We then divided these practices into two groups:

(1) those that are primarily part of the software development workflow, and (2) those that are part

of the infrastructure that supports software development. Table 2.4 lists the 11 practices and the

two larger groupings. The remainder of this section describes the claims about each of these 11

practices in more detail. Throughout the discussion, we emphasize the claims with bold-faced

text and provide additional discussion to substantiate the claim. While the standard practice in

systematic literature reviews is to provide separate answers for each research question, in this

review we believed it made more sense to answer them together so that each claim would be
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Table 2.4: SE practices

Development Workflow

Design Issues
Lifecycle Model
Documentation
Refactoring
Requirements
Testing
Verification and Validation

Infrastructure

Issue Tracking
Reuse
Third-Party Issues
Version Control

presented along with the evidence that supports it. Additionally, while any particular claim may be

positive or negative, the claims are worded so that all evidence supports them.

2.4.1 Development Workflow

Many of the claims focus on elements of the software development workflow, which usu-

ally includes requirements, design, implementation, testing, refactoring, and documentation. The

following subsections address each of these practices. The claims made in the following subsec-

tions are summarized in Tables 2.7-2.11. First the claim is presented and then the papers that made

the claim are categorized under the type of evidence they gave to support that claim. The first

category is NS, or No Specific evidence given. The second is PE, or Personal Experience. The

third category is I/S, or Interviews and Surveys. The final category is CS, or Case Study. The

papers categorized into the Case Study category did not neccessarily perform a formal case study,

but they did observe the practice in use outside of their own personal experience.
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2.4.1.1 Lifecycle Model

Our literature survey identified sixteen studies that contained claims about the use of life-

cycle models by scientific software developers. Table 2.5 summarizes the five claims that are

described in detail below.

LM1: Scientific software developers generally do not use a formal software develop-

ment methodology. We identified nine studies that made this claim [2, 10, 14, 34, 36, 44, 46, 62].

Instead of using a formal develoment methodology, scientists develop their software as follows:

1. The developer forms a basic idea of what is needed and begins coding.

2. The developer informally evaluates the software through questions like “does this software

do what I want?” and “Can it be usefully extended?”

3. The developer either modifies or extends the code as appropriate until the answer to the first

question above is “yes,” and the answer to the second is “no.”

4. The developer “tests” the software by asking, “Is the output broadly what I expect?”

When the answer to step 4 is “yes,” the developer considers the project complete. This approach

is only successful when the developer has a thorough understanding of the domain and what is

required to solve the problem, the developer is either the only user or part of the community that

will be using the product, and the software is meant to answer a “particular problem for a particular

group at a particular point in time.” [62]

LM2: The development methodology used by scientific software developers is similar

to the agile development methodology. A series of studies have suggested that scientific projects

are well-suited for agile development methodologies [3, 10, 14, 32, 44, 46, 64]. When scientific
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projects are investigating new science, they are not able to determine all of the requirements in

advance. Therefore, they cannot effectively use plan-driven approaches. Instead, the development

teams need a methodology that allows them to experiment with different solutions as the require-

ments are discovered. This methodology would have to include many of the characteristics of the

agile development methodologies developed by software engineers [10]. Scientific software devel-

opers support the observation that they generally use an agile development approach because they

do not know the requirements ahead of time [14].

Another scientific software development team suggests that the theoretical appropriateness

of agile-like approaches give benefits in the real world. The team adopted ideas from the agile

methodologies to successfully address the specific needs of their project. Their team was spread

across multiple labs and projects, which resulted in a need for “good communication across the

team, rapid development and delivery, and project management to coordinate development and

manage dependencies.” The need for communication is addressed by daily stand-up meetings

that allow members to help each other through issues and discuss new ideas. The needs for rapid

development and project management are met by iteration planning meetings, where they created

plans for short development cycles [36].

LM3: Paired programming provides an effective method for dealing with complex

software development requirements and an effective avenue for knowledge transfer. Paired

programming ensures that all developers on their team are able to take part in design and implemen-

tation decisions. Additionally, paired programming provides a convenient avenue for knowledge

transfer among the team, both of software development and subject matter knowledge. Paired

programming is also very valuable for the development of complex software functions, partic-

ularly when one developer is incorporating parts of the other developer’s software into their own
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code [36]. Conversely, some scientists also say that paired programming is not natural for scientific

software developers, and so it is not useful in all cases [21, 34].

LM4: Other software development approaches can also be useful in the right setting.

Scientific software developers viewed three more development practices as useful, however these

were not as broadly studied:

1. Feature-driven development was successful for one team [34],

2. Test-driven development reduces the number of errors introduced into the code for multiple

teams [2, 46, 57], and

3. Iterative/incremental development allows developers to get around the need for an up-

front requirement document that is required in a waterfall type model [6, 62]. For example,

a team had previously attempted to use a linear development methodology, but found that

it was completely unsuited for their needs and resulted in an unsuccessful first phase. They

then adopted an iterative development method for the second phase and found it was suc-

cessful [52].

LM5: Existing software development methodologies will need to be tailored to the

specific context of any given scientific software development team. In the more traditional busi-

ness/IT domain for teams fewer than half of the teams use a published methodology. In fact, many

teams tailor the methodology to fit their particular project [61]. For example, agile methodologies

should be the best fit for scientific software developers as these methodologies value: “response to

change over following a plan,” “individuals and interactions over processes and plans,” and “work-

ing software over comprehensive documentation.” However, agile methodologies alone would not

work in every case. In one project, because of existing interfaces, there were certain requirement
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Table 2.5: Lifecycle Model
Claim NS PE I/S CS
LM1: Scientific software developers do not
generally use a formal software development
methodology

[2] [36, 62, 64] [10, 14, 34, 44]

LM2: The development methodology used
by scientific software developers is similar to
the agile development methodology

[3, 32, 36] [64] [6, 10, 14, 44, 46]

LM3: Paired programming provides an ef-
fective practice for dealing with complex
software development requirements and an
effective avenue for knowledge transfer

[21, 36] [34]

LM4: Scientific software developers viewed
feature-driven development, test-driven de-
velopment, and iterative development as ef-
fective

[2, 52] [62] [34, 46, 57]

LM5: Existing software development
methodologies will need to be tailored to
the specific context of any given scientific
software development team

[61]

specifications that had to be met. This portion of the project is better handled by a traditional

development method. In order to address the discrepancy, it was effective to utilize a method

from Boehm and Turner to blend agile and traditional methodologies in order to minimize the

risk in the development process. This blend incorporated particular agile elements into the project

development. As an example, the project had a long time-scale which meant that knowledge of

the instrument, software and science had to be preserved. To address this need for preservation

of knowledge, the development team utilized pair programming where a software developer was

paired with scientist so that the developer learns some of the scientific background of a project and

the scientist becomes familiar with the software [61].
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2.4.1.2 Requirements

Our survey of the literature identified five studies that contained claims about the use of

requirements by scientific software developers. We group the detailed list of claims into three

over-arching claims in the following discussion. Table 2.6 summarizes the three claims that are

described in detail below.

RQ1: Scientific software developers often do not produce a proper requirements spec-

ifications. Multiple studies have made this claim [34, 40, 59–62]. In one particular set of inter-

views of scientific developers, none created a requirements document. Even in cases where the

sponsor mandated production of a requirements document, the developers created it when the soft-

ware was almost finished. The most information an interviewee had at the start of development

was a vision statement from a customer [59]. In another example, scientists developed using an it-

erative approach which allowed the requirements to emerge over time rather than being articulated

a priori. Therefore, the lack of understanding of the need for up-front requirements, led to late

document delivery and increased time pressure on the project [61].

RQ2: When scientific software developers do produce requirements, they generally

focus on high-level requirements. We found two studies that made this claim [40, 62] Tradi-

tionally, because the high-level requirements are part of the scientist’s domain knowledge, they

tend to assume that the task of translating these high-level functional requirements into lower-level

requirements would be trivial for software engineers. However, because software engineers may

not have the requisite scientific background to perform this decomposition, projects end up being

more expensive than necessary [62].

RQ3: When scientists produce high-level requirements, they rely on developers to pri-
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Table 2.6: Requirements
Claim NS PE I/S CS
RQ1: Scientific software developers often do not produce
proper requirements specifications.

[62] [59, 60] [34, 40, 61]

RQ2: When scientific software developers produce re-
quirements, they generally focus on high-level require-
ments.

[62] [40]

RQ3: When scientists produce high-level requirements
they rely on developers to prioritize them.

[60]

oritize them. In one case we found [60], the lack of scientific background made it difficult for the

software developers to properly prioritize requirements and effectively develop the software [60].

To rectify this problem, a scientific representative had to be assigned in a later stage to prioritize

requirements for the developers [60].

2.4.1.3 Design Issues

Our survey of the literature identified four studies that contained claims about the use of

software design by scientific software developers [60]. We group the detailed list of claims into

three over-arching claims in the following discussion. Table 2.7, summarizes the three claims that

are described in detail below.

DI1: In general, scientific software designers do not treat design as a distinct step in

the development process. In the first study related to design issues, the authors interviewed twelve

scientific software developers. Only two of the interviewees actually used a separate software de-

sign step. Most of the interviewees had backgrounds similar to those of their users. This common

background led the scientific software developers to assume that a design that suits the use of the

designer will also suit the needs of the user. There were only two scientists, a civil engineer and a

medical software developer, that could not assume that the user would not be similar enough to the

designer for the same design to suit their needs. It was these two that performed a distinct design
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Table 2.7: Design
Claim NS PE I/S CS
DI1: In general, scientific software designers do not treat de-
sign as a distinct step in the development process.

[60]

DI2: Scientific software developers see redesign as a waste of
time that risks breaking the “science” of a program.

[60]

DI3: Object Oriented Design helps produce useful software. [17, 19, 51]

step. A civil engineer took advantage of the object-oriented design philosophy and a medical soft-

ware developer utilized a software architecture that had been used for previous medical software

projects.

DI2:Scientific software developers see redesign as a waste of time that risks breaking

the “science” of a program. These scientists said they added modules to “behemoth” or “mon-

ster” programs that were the culmination of years of work by multiple researchers. Some of the

interviewees would only consider redesign if runtime was a critical factor for the software’s suc-

cess that was not being met. In general, the scientists did not view design as an important practice

due to either not seeing it as providing an advantage or their development consisting mostly of

expanding existing software projects that they are reluctant to change [60].

DI3:Object Oriented Design helps produce useful software. The other three studies

[17, 19, 51] dealt with projects that sought to provide modular functionality. Each of the authors

found that the use of a programming language that allowed them to utilize an Object-Oriented

design paradigm was neccessary for their project to be successful.

2.4.1.4 Testing

Our survey of the literature identified eighteen studies that contained claims about the use of

testing by scientific software developers. We group the detailed list of claims into four over-arching
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claims in the following discussion. Table 2.8, summarizes the four claims that are described in

detail below.

T1: The effectiveness of the testing practices currently used by scientific software

developers is limited. Ten studies made this claim [2, 13, 14, 30, 43, 45, 47, 54, 55, 62]. One of

these studies was a survey, the results of which are summarized in Figure 2.1.

Figure 2.1: Testing Types from Survey

The authors also asked respondents to give the reasons that they performed certain types of

tests. They received the following responses (in order of the number of responses):

• Correctness of software;

• Known results or ‘reliable’ programs to compare against exist;

• Easiest or least effort required for these tests;
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• User acceptance;

• Not testing software is ‘stupid’;

• Considered to be best practices;

• Familiarity with methods; and

• Avoid costly maintenance later.

A few respondents also gave reasons that they did not perform testing: 1) “lack of management

support,” 2) “applications are not large or complex enough to warrant certain types of testing,” and

3) “it is usually clear whether the software is working as intended.” Even these people who gave

reasons not to perform testing utilized two or more types of testing [47].

T2: Scientific software developers benefit from using a wide range of testing practices

from software engineering. Twelve studies made this claim [2, 12, 13, 30, 33, 41, 43, 48, 49,

52, 55, 56]. One method of addressing the problem in T1 is to use test-driven development to

keep bugs such as these from remaining in their code in addition to doing a regular, automated

build in order to test their code on a regular basis rather than waiting until project is completed [2,

13, 49, 55]. Additionally, according to the Los Alamos National Laboratory (LANL) Accelerated

Strategic Computing Initiative ASCI Software Engineering Requirements, regression testing and

integration testing are both essential elements of software project management [13, 52]. In fact,

many scientists who successfully test their code are actually using integration testing already, but

they just think of it as using the scientific method. For example, every time a model is changed, the

scientists treat it as a new experiment and test it, using the previous results as a control [14, 43].

T3: The testing practices that scientific software developers do utilize are often exe-
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cuted poorly. When testing is inconsistent, the tests are not repeatable. A potential pitfall is the

possibility that scientists use testing to show that the theory is correct, rather than using testing to

identify where the software does not work properly. This choice could be due to the code being

tightly coupled to the theory in the scientist’s mind, not existing as an entity of its own. Testing re-

quires comparison to an oracle. The problem is that when the oracle and test results do not match,

the scientist does not know whether the problem lies with the theory, the theory’s implementation,

the input, or if the oracle itself is flawed [12, 33]. This last case can occur even when an oracle is

available from measurements of a physical experiment–the measurements can be incorrect or in-

complete. Furthermore, even with a perfect oracle, the fact that two tests yield the correct answer

does not mean that similar, but not the same, inputs will yield the correct answer [59].

T4: Testing is much more complicated for scientific development than traditional soft-

ware development since the correct results are frequently unknown. An additional difficulty is

that testing is much more complicated for scientific software developers due to the fact that exper-

imental validation may be impossible. This lack of experimental validation means that a scientist

may not even have an expected answer [14, 29, 32, 62]. Much of this difficulty largely seems to

stem from developers testing their code after development is mostly finished, forcing the develop-

ers to test the software as a whole instead of breaking it into realistically testable pieces [2, 13].

One study proposed a practice to test scientific programs without relying on experimental valida-

tion. In particular, they used metamorphic testing, assertion testing, and generated less rigorous

testing oracles using machine learning [29].

2.4.1.5 Verification and Validation

Our survey of the literature identified eleven studies that contained claims about the use

of verification and validation by scientific software developers. It is worth noting that scientific
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Table 2.8: Testing
Claim NS PE I/S CS
T1: The effectiveness of the
testing practices currently used
by scientific software develop-
ers is limited.

[2] [13, 43] [47] [14, 30, 45, 54, 55, 62]

T2: Scientific software develop-
ers would benefit from using a
wide range of testing practices
from software engineering.

[2, 52] [12, 13, 41, 43, 49] [30, 33, 48, 55, 56]

T3: The testing practices that
scientific software developers
do utilize are often executed
poorly.

[12, 33] [59]

T4: Testing is much more com-
plicated for scientific develop-
ment than traditional software
development since the correct
results of a piece of software are
frequently not known.

[2] [13, 29, 32, 62] [14]

software developers and software engineers do not neccessarily use the same definition of veri-

fication and validation. A common definition of verification in scientific software development

is "the process of determining if a computational model obtained by discretizing a mathematical

model of a physical event and the code implementing the computational model can be used to rep-

resent the mathematical model of the event with sufficient accuracy" [4]. A similar definition for

validation is "the process of determining if a mathematical model of a physical event represents

the actual physical event with sufficient accuracy" [4]. While these are slightly different from the

standard software engineering definitions of verification as the evaluation of how well a product

corresponds with its specifications and validation as the evaluation of how well a product meets its

goals, they are similar enough that we will use the software engineering definition in the remainder
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of this section. We group the detailed list of claims into four over-arching claims in the following

discussion. Table 2.9, summarizes the four claims that are described in detail below.

VV1: The lack of suitable test oracles or comparable software makes validating sci-

entific software difficult. There are two primary issues raised by the studies that have made

this claim. First, there is a lack of suitable test oracles to use for scientific software devel-

opment [14, 22, 32, 55, 56]. There are rarely other pieces of software that are both relevant

to the problem a developer is working on and already have exact answers the developer could

compare against. Because this software rarely exists, scientific software developers find it hard

to compare the results from their software with the results from other pieces of scientific soft-

ware [22, 32, 53, 55, 56]. To address this lack of external information, some developers have

attempted to perform verification by monitoring variables that change in a known manner, but

these variables are not the ones that scientists are usually concerned with, so the usefulness of this

monitoring is limited [53]. Additionally, the models that are implemented in scientific software are

usually extremely complex, and the value of a model to scientists does not necessarily depend on

how exactly it matches reality [53].

VV2: There are many ways that defects can enter software. First, the science behind

the code could be wrong. Second, the translation from the scientific model to an implementable

algorithm could be wrong. Finally, the translation from algorithm to code could be wrong [7, 9, 55].

VV3: Scientists frequently suspect that any problems in the results of their software

result from scientific theory. One study found that when validation testing fails, scientists tend to

look more closely at the science rather than the code. This finding indicates a problem because the

lack of attention allows errors in code to slip through unnoticed [31].

VV4: Experimental validation is frequently impractical because scientists lack the
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Table 2.9: Verification and Validation
Claim NS PE I/S CS
VV1: The lack of suitable test oracles or compa-
rable software makes validating scientific software
difficult.

[22, 32, 55, 56] [14, 53]

VV2: There are many ways that defects can enter
software.

[55] [7, 9]

VV3: Scientists frequently suspect that any prob-
lems in the results of their software result from sci-
entific theory.

[31]

VV4: Experimental validation is frequently im-
practical because scientists lack the information
they would prefer to use to validate the software.

[25, 63] [10, 14]

information they would prefer to use to validate the software. We found this claim in four

studies [10, 14, 25, 63]. There are two primary reasons given for this claim. First, many scientists

believe that useful validation would have to consist of comparing the results from their software

to the results gained from a physical experiment or observation [14]. As was mentioned in the

introduction, the cost or danger of performing these physical experiments is often the reason why

scientists build software models in the first place, so the physical experiments will not be done

before promising software models have been created. Second, expermental validation is frequently

impractical since it is usually difficult or impossible to know what the correct result for a piece of

software will be until the software is run [10, 25, 63]. In some cases, scientific software developers

treat validation studies as research projects or theses in and of themselves due to the challenge in

performing them. In these cases, scientists do not find that it is feasible to fully validate every piece

of their software [25].

2.4.1.6 Refactoring

Our survey of the literature identified five studies that contained claims about the use of

refactoring by scientific software developers. We group the detailed list of claims into two over-
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Table 2.10: Refactoring
Claim NS PE I/S CS
RF1: Refactoring is a useful practice to increase software quality. [2] [15] [11, 39]
RF2: Refactoring is not always possible. [14]

arching claims in the following discussion. Table 2.10, summarizes the two claims that are de-

scribed in detail below.

RF1: Refactoring is a useful practice to increase software quality. Four of the five

studies found that refactoring was a useful practice. In particular software refactoring:

• is a useful practice for improving performance [11, 15],

• has proven to be a highly valuable practice for the bioinformatics domain [11],

• is also a powerful practice for maintaining and improving the quality of code [11, 39], and

• is particularly useful in conjunction with the automated refactoring tools of IDEs such as

Eclipse [2].

RF2: Refactoring is not always possible. On the other hand, refactoring is almost im-

possible when bit-wise comparison (i.e. a practice in which a model is run for a shortened period

of time and then the variables are compared with other runs of the same length) is used to verify

code, because that practice would only work if changes did not alter the bit values of any of these

variables [14].

2.4.1.7 Documentation

Our survey of the literature identified nine studies that contained claims about the use of

documentation by scientific software developers. We group the detailed list of claims into three
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over-arching claims in the following discussion. Table 2.11 summarizes the three claims that are

described in detail below.

D1: Documentation is a necessary enabler of software quality. Formal documents are

important when a project is given to a team that is not the original development team [21, 24, 32,

50]. In fact, examinations of the ASCI program at LANL and Lawrence Livermore National Labo-

ratory (LLNL) suggest that documentation is one of the practices that is essential for scientific soft-

ware developers to adopt in order to guarantee quality [9, 52]. One benefit is that documentation

enables communication between team members as well as providing references for papers, grant

authoring, and grant reporting. Documentation is especially vital if scientific software developers

wish to use their earlier software as a basis for developing more advanced software [24, 39, 54].

D2: Documentation is becoming more frequently used. In a more recent study, Nguyen-

Hoan et al. [47] conclude, based on the result of a survey with 60 respondents, that documentation

is more widely produced than is indicated in these early studies. The responses to their summary

are given in Figure 2.2. Nguyen-Hoan et al. also gave the three most common arguments in favor of

producing comments as well as the four most common reasons for not producing comments. The

comments in favor were: 1) “For users of the software,” 2) “For future maintenance purposes,”

and 3) “Documentation is integral to software.” The arguments against documentation were: 1)

“Limited due to time and effort required,” 2) “Effort not worth it due to small user base,” 3)

“requirements constantly changing or not specified up front,” and 4) “Software should be or is

‘intuitive,’ ‘easy to understand,’ or ‘doesn’t need a full description’ [47].”

D3: Documentation requires a significant investment of work. Not all of the claims

about documentation were positive. The effort required to create documentation leads some de-

velopers to conclude that scientific software developers should be careful about how much docu-
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Figure 2.2: Documentation Produced by Developers

Table 2.11: Documentation
Claim NS PE I/S CS
D1: Documentation is a necessary enabler of software
quality.

[52] [21, 24, 32] [50] [9, 39, 54]

D2: Documentation is becoming more frequently used. [47]
D3: Documentation requires a significant investment
of work.

[21] [50] [54]

mentation they create [21, 50]. Furthermore, if the documentation is done to satisfy an external

requirement it may not benefit the project team [21, 50]. However, one study did find an alternative

to performing a separate documentation task and utilized an automatic documentation generator

that creates documentation from comments in the project’s source files [54].

2.4.1.8 Summary of Development Workflow Claims

In general, the development workflow claims suggest that each practice would be useful,

but there are difficulties that keep scientific software developers from adopting them in their current
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forms. Seventeen claims were supported by multiple types of evidence with seven supported by

only one type of evidence. The most common type of evidence for these claims that were supported

by only one type was Interviews and Surveys, which accounted for three of the claims. Only

four studies had support from every type of study. The claim that had the most support was T2:

"Scientific software developers would benefit from using a wide range of testing practices from

software engineering." Notably, every claim that was supported by a paper that did not provide

evidence was also supported by papers that provided one of the other types of study.

We identified two claims with conflicting evidence. First, one author’s personal experience

was that paired programming is valuable for the development of complex software while the case

study from another author showed that it is not useful for scientific software development. This

issue needs to be further examined as there are two primary possible explanations. The first is that

the usefulness of paired programming depends on the context of the development team. The second

potential explanation is that the teams involved in the case study were not well-trained in utilizing

paired programming or they lacked the knowledge to utilize this practice effectively. Additionally,

while they viewed documentation as necessary, two studies made the claim that the amount of

work required to create documentation means that scientific developers should be careful about

how much documentation they make.

2.4.2 Infrastructure

The practices in this category all serve to support various aspects of the software develop-

ment lifecycle. Each practice is addressed in its own section and the claims are summarized in

Tables 2.12-2.15. The tables use the same notation as described in Section 2.4.1
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2.4.2.1 Issue Tracking

Our survey of the literature identified two studies that contained claims about the use of

issue tracking by scientific software developers. We group the detailed list of claims into two

over-arching claims in the following discussion. Table 2.12 summarizes the two claims that are

described in detail below.

IT1: Issue tracking greatly eases communication between members of a development

team. Issue tracking is a useful practice for communicating information about discovered bugs

and needed functionality between developers. Issue tracking software allows this information to be

stored and communicated instantly between all members of a development team. When additional

remote groups are added to existing development teams, an issue tracking system is required to

formally record bugs and new requirements as well as to create a trail of the completed activity [2].

Issue-tracking software also made a list of the ten most important software engineering practices

for scientific software developers to use [21]. There are four primary reasons to use issue tracking

software rather than informally tracking issues:

• Issues can be made visible to the entire team;

• The ability to prioritize issues is frequently provided;

• Many systems provide the ability to track dependencies between issues; and

• The history of issues is searchable for future reference [21].

IT2: Issue tracking helps insure that no two groups in a development team are work-

ing on the same problem. The dependency-tracking feature of issue tracking software also allows

a large deliverable to be broken into a set of smaller features that it is dependent upon. This set
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Table 2.12: Issue Tracking
Claim NS PE I/S CS
IT1: Issue Tracking greatly eases communication between members of
a development team.

[2] [21]

IT2: Issue Tracking helps insure that no two groups in a development
team are working on the same problem.

[21]

can then be distributed among various groups so that no two groups are working on the same

feature [21].

2.4.2.2 Reuse

Our survey of the literature identified eight studies that contained claims about the use of

reuse by scientific software developers. We group the detailed list of claims into two over-arching

claims in the following discussion. Table 2.13 summarizes the two claims that are described in

detail below.

RU1: Software must be properly designed to be reusable. The primary reasons to reuse

a piece of software are to save time and money as well as to ensure reliability. The following

qualities are needed for a reusable component: self-contained, able to be combined with other

components with minimal side effects, formal mathematical basis, confidence that the component

performs its defined purpose satisfactorily, understandable, verifiable, encapsulation, simple inter-

face, flexibility, easily modified, general, programming language independent, and portable [24].

The most reused types of artifacts are source code, scripts, algorithms, and practices [19, 26, 35,

44, 58, 66].

RU2: There are many reasons not to reuse or produce reusable software. The primary

barriers to the reuse of software are that available software does not meet requirements closely

enough and that the software was difficult to understand or poorly documented. There are also
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Table 2.13: Reuse
Claim NS PE I/S CS
RU1: Software must be properly designed to be reusable. [44] [19, 24, 35, 58] [66] [26]
RU2: There are many reasons not to reuse or produce
reusable software.

[58, 65] [66] [26]

many reasons for not producing reusable code: the additional expense of developing for reuse, the

software release policies of their organizations, concerns over intellectual property rights, and the

absence of a common distribution mechanism [26, 58, 65, 66].

2.4.2.3 Third-Party Issues

Our survey of the literature identified nine studies that contained claims about the use of

third party software by scientific software developers. We group the detailed list of claims into

four over-arching claims in the following discussion. Table 2.14 summarizes the three claims that

are described in detail below.

TPI1: Third party software may cease being supported before scientific software

projects are finished. The long lives of scientific software projects make it likely that any par-

ticular technology will cease being supported before the project is finished. These long lives have

led to many instances of technologies that promised improved productivity only to cease being

supported and no longer be available [5, 42]. Due to this history of failed usage of third-party

technologies, scientific software developers tend to prefer to either develop the software they need

themselves or to use open-source software.

TPI2: Scientific software developers are not convinced that reusing existing frame-

works will save effort in their development. Some scientific software developers believe it takes

more effort to fit their work into a framework than they would save by using the frameworks [5, 42].

Additionally, a significant barrier to the use of existing frameworks is that they cannot be integrated
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incrementally into an existing code. Scientists tend to mitigate risk by having multiple technolo-

gies co-existing within a piece of software until one is chosen, but this practice cannot be followed

easily with many frameworks [5].

TPI3: Open-source is especially useful to scientific software developers. Five studies

found that open source had promising features to help scientific software developers utilize third

party products. First, the scientists do not have to devote their effort to developing the software.

Additionally, if the original developers of the software cease to support it, scientific software devel-

opers have access to the source code and can maintain it themselves [3, 10, 18, 26, 35, 42, 44, 67].

In one project, in order to limit the risks, a developer was assigned to thoroughly test any code

before it was integrated into the main project. The project itself was set up so that commitments to

the sponsor are not endangered by the absence of an expected piece of third party software [10].

TPI4: Open-sourcing software can be seen as giving up a competitive advantage. One

study, however, found that the competitive nature of the scientific community can lead developers

to not produce open-source software in the first place. The study concluded that this is a problem

that can only be directly addressed by encouraging the community to communicate more closely

and recognize that shared development will allow science to advance at a greater rate [67].

2.4.2.4 Version Control

Our survey of the literature identified ten studies that contained claims about the use of

version control by scientific software developers. We group the detailed list of claims into two

over-arching claims in the following discussion. Table 2.15 summarizes the two claims that are

described in detail below.

VC1: Version control software is necessary for research groups with more than one

developer. This claim was made by eight studies [2, 5, 6, 14, 16, 25, 31, 54]. Version control tools
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Table 2.14: Third-Party Issues
Claim NS PE I/S CS
TPI1: Third Party Software may cease being sup-
ported before scientific software projects are fin-
ished.

[42] [5]

TPI2: Scientific software developers are not con-
vinced that reusing existing frameworks will save
effort in their development.

[42] [5]

TPI3: Open-source software is especially useful
to scientific software developers.

[3, 35, 67] [10, 18, 26, 42, 44]

TPI4: Open-sourcing can be seen as giving up
competitive advantage.

[67]

are needed to keep up with changes to software that can accumulate extremely rapidly. Version

control tools allow a developer to track each new version of a piece of code that is created and

identify changes between versions. Versions of software that are used to publish results, support

major decisions, or undergo extreme testing are the most important to track [31]. In addition, the

developer needs to maintain a complete copy of any software used to produce important results. An

example of why the need to keep a copy of the software is important is a case where a researcher

tried to reproduce results that she had produced the previous year. Because the researcher did not

have access to the old versions of the data she needed, she had to spend a considerable amount

of time reproducing the input data. In one case, even though she had the data, the results were

significantly different from the previous run. In this case, the executable for the first test had

been built using different compiler options [31]. In addition to utilizing version control systems,

it is useful to have a formal process to approve code that is to be checked into the repository.

This process would ensure that a piece of code passes all relevant test cases instead of relying on

individual developers to perform these tests [25].

VC2: Distributed version control is particularly useful for scientific software devel-
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Table 2.15: Version Control
Claim NS PE I/S CS
VC1: Version control software is necessary for research
groups with more than one developer.

[2] [16, 31] [5, 25] [6, 14, 54]

VC2: Distributed Version Control is particularly useful
for scientific software development.

[2] [14, 54]

opment. There are two major types of version control systems: centralized and distributed. In

a centralized system, a single server stores the master copy of the entire project; meaning that if

the server goes down or the network becomes unavailable, no one can submit work on the project.

Also, if the server’s data is lost, the entire project is lost as well. An alternative is to use a dis-

tributed version control system instead. In this implementation, each user has a full copy of the

entire project on their machine which is updated to match other copies as connections to the other

nodes in the network are available. The primary problem with distributed version control systems

is that they are complicated to manage, requiring a strategy for sharing modifications and synchro-

nizing local copies [23]. One instance of distributed version control is “The Abinit forge,” a custom

version control system built on Bazaar–a distributed version control system and an ssh-server. Each

Abinit developer has a Bazaar repository that stores their branches of their software, providing fast

data access and somewhat optimized usage of disk space. A daily script makes all contributions

to a project available through a password-protected website which allows the developer to share

his work with others and organize collaborative developments involving remote workplaces [54].

Other tools in common use are: Revision Control System and Concurrent Version System, the lat-

ter of which can be utilized from within the Eclipse IDE to ease the overhead required by adopting

the tool [2, 14].
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2.4.2.5 Summary of Infrastructure Claims

In general, the infrastructure claims suggest that each of the practices covered under each

practice would be useful, but there are difficulties that keep scientific software developers from

adopting them in their current forms. Despite this positivity, the adoption of these practices is not

particularly wide-spread in scientific software development. This lack of adoption suggests that

this area needs the support of software engineers seeking to aid scientific software development.

The claims related to infrastructure have not been investigated as deeply as those related to

the development workflow. In fact, there were only ten major infrastructure claims. Eight of the

claims were supported by multiple types of evidence, while two were supported by only one type

of evidence. Both of these were supported by Personal Experience. Three claims had support from

every type of study. Two claims tied for having the highest level of support: TPI3: "Open-source

software is especially useful to scientific software developers" and VC1: "Version control software

is necessary for research groups with more than one developer." Once again, every claim that was

supported by a paper that did not provide evidence was also supported by papers that provided one

of the other types of study. It is interesting to note that all evidence indicated that the infrastructure

practices are effective. Even so, the general lack of strong support suggests that the entire area

of infrastructure support for scientific software development is an open research area for software

engineers seeking to aid scientific software developers in their pursuit of knowledge.

2.5 Conclusion

This paper looked at the literature on development in computational science from both

the scientific software and software engineering domains in order to answer the question of what

claims are made about the usage of software engineering practices by scientific software devel-
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opers. In order to answer this question, the paper looked at the claims made by both scientific

software developers and software engineers. The claims show that scientific software developers

believe that software engineering practices could increase their ability to develop quality software

and software engineers agree that scientific software developers adopting software engineering

practices would allow them to produce higher quality software. Scientific software developers and

software engineers agree that computational science has much work left to do in order for the

quality of computational science software to reach the level of quality that characterizes traditional

software. In particular, every piece of evidence from these papers indicated that the infrastructure

practices are effective when they are used. Despite this, there was a general lack of strong support-

ing evidence, which suggests that the entire area of infrastructure support for scientific software

development is an important research area for software engineers seeking to assist scientific soft-

ware developers.

Even so, these claims show that there has been much work done in this area already. Spe-

cific practices that have been adopted strongly by scientific software developers are issue tracking

and version control. The authors who addressed these practices also saw them as two of the most

important practices. Interestingly, scientific software developers have, to a large extent, uncon-

ciously adopted a software engineering development practice. While many scientific software

developers do not know how to formally implement the agile development approach, their normal

development methodology closely approximates it. The agile approach fits well with their inability

to know all of the requirements of the physical systems their software is attempting to model. The

iterative nature of the agile approach also allows the software models to evolve more easily than a

traditional waterfall model would.

The practices that scientific software developers view as important, but have not widely
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adopted, are verification and validation and testing. While they see these practices as extremely

useful and important, the current status of each of them is extremely difficult in the scientific soft-

ware domain. In particular, it is difficult to validate scientific software by comparing it to real-world

data because the scientific software is attempting to investigate areas for which real-world exper-

iments are not feasible to perform. Additionally, scientific software developers do not know how

to apply many of the testing practices that have been developed in traditional software engineering

to their own software development. Because of this lack of knowledge, software engineers need to

work with scientific software developers to train the scientific software developers in testing and

verification and validation practices. Software engineers also need to tailor the existing practices

to better fit the needs of the scientific software developers.
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Chapter 3

SURVEYS

3.1 Introduction

Scientific software is software developed and used by scientists or engineers to support re-

search in a number of important fields, e.g. climate modeling, weather forecasting, high-energy

physics, and cancer research. The development and use of scientific software is increasingly en-

abling important discoveries by replacing dangerous or expensive physical experimentation and

aiding in the processing of very large data sets. Because the output of scientific software is a key

factor in many critical decisions, it is of utmost importance for that software to be of high quality

and produce correct results. The higher the quality of the software, the more confidence researchers

and decision-makers can have in the results.

Before a scientific or engineering problem requires the development of software to support

its investigation, it must be of sufficient complexity. Therefore, the scientific developers often

need advanced technical training in the domain, likely a PhD, to even understand the problem. A

typical software engineer will lack this level of knowledge, making it difficult for him or her to be

an effective developer. As a result, scientists and engineers, who generally lack formal software

engineering education, must also serve as the main developers of scientific software.

Traditional software is software developed for use in the business/IT world. Software engi-

neering researchers and practitioners have developed a number of practices to reduce development

effort and increase software quality for traditional software. Unfortunately, scientific software de-
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velopers often do not adopt these practices [12]. While the level of adoption is increasing, there

is still room for additional improvement [13]. It is likely that the low adoption rate of software

engineering practices affects the quality of the resulting scientific software.

Various researchers have conducted studies to understand the factors that may influence the

low adoption rate of software engineering practices within the scientific software community. In

comparing the characteristics of traditional software with those of scientific software, researchers

have noted some similarities and differences. Some of the differences suggest the need for tailoring

software engineering practices for effective use in the scientific software domain [14, 21]. These

differences include:

• scientific software developers learn how to develop software from other scientific software

developers who also lack formal software engineering training [1];

• many large scientific software packages were not initially designed to be large, but rather

grew as a result of success [1];

• scientific software is primarily used by its developer or its developers’ research group rather

than by external users [1];

• scientific software requirements gathering and discovery is difficult because the goal of the

software is often to explore unknown domains to increase understanding rather than to solve

a known, tractable problem [4–6, 19];

• verification and validation are difficult because often the expected result is not known or

cannot be known a priori and there are multiple potential sources for defects [4, 5, 15, 17];

and
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• the scientific or engineering outcomes are viewed as being more important than choosing the

most appropriate software engineering practices [4, 5, 18].

These characteristics suggest that scientific software developers could benefit from using software

engineering practices. They also suggest that scientific software developers are not taking advan-

tage of, or are not aware of, these potentially helpful practices.

An important step prior to addressing the need for improved software engineering for sci-

entific software is to understand the current state of software engineering knowledge and use in

the scientific software community. This paper describes the results of two surveys we conducted

to gather this information. To that end, the main contributions of this paper are:

• a detailed examination of the current state of software engineering in the scientific software

community,

• identification and analysis of the most important problems in scientific software development,

and

• an analysis of the current state of knowledge and use of the software engineering practices

that could address those problems.

We published preliminary results from Survey 1 in Computing in Science and Engineer-

ing [2]. In addition, we presented preliminary results from and Survey 2 at the First Workshop

on Maintainable Software Practices in e-Science [9]. This paper extends the prior work in two

ways. First, it adds further analysis and new data from each survey. Second, it provides a detailed

analysis of the results across both surveys.

The remainder of this paper is organized as follows. Section 3.2 describes the design and

results of the Survey 1. Section 3.3 describes the design and results of Survey 2, including the
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changes made to address weakness of Survey 1. Finally, Section 3.4 describes the findings across

both surveys and draws some conclusions.

3.2 Survey 1

The goal of Survey 1 was to gather information from scientific software developers about:

1. Their perception of the level of software engineering knowledge possessed by themselves,

their team, and the scientific software community as a whole;

2. How they acquired their software engineering knowledge; and

3. Whether they were familiar with and/or using various standard software engineering prac-

tices.

3.2.1 Survey Design

To address these goals, we designed a 4-part survey. The complete survey is available at

http://carver.cs.ua.edu/Data/Journals/CSE-Surveys/survey1.pdf.

First, to obtain an overall picture of software engineering knowledge, the respondents an-

swered the following questions on a 3-point scale (Not Sufficient, Mostly Sufficient, Fully Sufficient)

and provided an explanation:

1. “Do you think your current knowledge and skills about software development and software

engineering are sufficient to effectively meet your project’s objectives?”

2. “Do you think your team members’ current knowledge and skills about software develop-

ment and software engineering are sufficient to effectively meet your project’s objectives?”

3. “In general, do you think the current knowledge and skills about software development and

software engineering in the scientific software community are sufficient to effectively ad-

vance scientific software?”
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Second, our previous work, as well as supporting evidence from other researchers, led us to

believe that most scientific software developers lack formal software engineering training [4, 5, 12,

13]. To validate this belief, the survey asked the respondents to rank order the following sources

relative to their frequency of use in obtaining software engineering knowledge:

• reading books,

• attending training courses,

• co-workers,

• learned own my own.

Third, the bulk of the survey focused on specific software engineering practices commonly

used in traditional software development. The respondents provided the information necessary to

complete Table 3.1, where the value for each cell was chosen from a 5-point scale (1-none to 5-very

high)1. We chose these practices because our interactions with members of the scientific software

community led us to believe they would be potentially useful for scientific software developers

and at least some were already in use. The survey did not provide a definition for each practice

because we believed that the terms were self-evident – a threat to validity discussed in more detail

in Section 3.2.3. The design of Survey 2 also addresses this threat.

Fourth, the survey gathered the following demographic information about the respondents:

type of institution in which they work (government lab, university, private company, other), number

of years of scientific software development, fraction of scientific software development devoted to

producing software for use in their own research vs. software intended for use by others, and the

level and field of their educational degrees.

1 Note that the survey did not present this exact table, rather it presented the questions separately. We use the table
in the paper for compactness.
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Table 3.1: Rating of Software Engineering Practices (Survey 1)
Personal Personal Team Team Relevance

Use Familiarity Use Familiarity to My Work
Software
Lifecycles
Documentation
Requirements
Basic Design
Intermediate De-
sign
Verification &
Validation
Unit Testing
Integration Test-
ing
Acceptance Test-
ing
Regression Test-
ing
Version
Control/ Change
Management
Issue/Bug Track-
ing
Test-Driven
Development
Structured Refac-
toring
Code Review
Agile
Methods
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3.2.2 Analysis

Rather than organizing the results around the exact outline of the survey from Section 3.2.1,

the following subsections make use of data from various parts of the survey to provide a more

complete picture of the state of software engineering in the scientific software community.

3.2.2.1 Demographics

Our goal in this survey was to target as large a representative sample of the scientific soft-

ware community as possible. We sent the survey out to a number of scientific software mailing

lists to which we had access, including: several internal Sandia National Labs lists (Charon, Alegra,

SIERRA, Xyce, Dakota), the Trilinos users and developers lists, the PETSc users and developers

lists, the Consortium for Advanced Simulation of Light Waters Reactors (CASL) members list,

and the Numerical Analysis Digest mail list. While we chose these lists as a convenience sample,

we believed that they would target a representative subset of the scientific software community.

The survey received 141 respondents. This sample was fairly diverse and experienced

based upon four key demographics. First, in terms of their highest degree, 82% respondents held

a Ph.D. with an additional 16% percent holding a Master’s degree. Second, in terms of the disci-

pline of their highest degree, the most common fields were Mathematics & Statistics, Engineering,

and Computer Science. Third, Figure 3.1 shows the distribution among employer types. Finally,

Figure 3.2 shows the length of time respondents had been developing scientific software.

3.2.2.2 Knowledge Source

Figure 3.3 shows that close to 60% of respondents obtained their software engineering

knowledge most often from their own experience, with only a very small fraction using the more

traditional approach of attending courses. While the respondents may have been able to gain
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Figure 3.1: Type of Employer

Figure 3.2: Years Developing Scientific Software
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Figure 3.3: Knowledge Sources

significant software engineering knowledge in this manner, it is likely that this knowledge is limited

to the subset of the relevant software engineering practices that happened to be in use within their

particular environment. The lack of formal, classroom training may result in a lack of exposure to

the breadth of knowledge and practices available within software engineering. Because of this lack

of exposure, there are likely some useful software engineering practices with which the respondents

are unfamiliar. Note that while we asked respondents to rank only one source as “first,” due to the

constraints of the survey tool, we were not able to enforce this requirement. Therefore, the sum for

“First” in Figure 3.3 is greater than 100%.

3.2.2.3 Self-Rating of Software Engineering Knowledge

Figure 3.4 shows that the majority of the respondents indicated that their own knowledge,

as well as their team’s knowledge and the community’s knowledge, was mostly sufficient for their

development tasks. Interestingly, as the unit of analysis moved further away from the respondents

(i.e. self to team to community) their perception about the sufficiency of software engineering
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Figure 3.4: Sufficiency of Software Engineering Knowledge (First Survey)

knowledge decreased. This observation is evident in both the no column (increasing as the unit

of analysis becomes more distant) and in the mostly column (decreasing as the unit of analysis

becomes more distant). These results suggests that the respondents believed that they, their teams,

and the community know enough about software engineering to perform their work. It is interesting

to note that, in general, the respondents viewed themselves as being more knowledgeable than the

rest of their team or the larger community.

In the respondents’ explanations for their ratings of the sufficiency of software engineering

knowledge within the scientific software community, four primary problems emerged:

• Rework,

• Performance issues,

• Regression errors, and

• Forgetting to fix bugs that were not tracked.

Notably, each of these problems has been addressed by one or more of the software engineering
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practices included on the survey. Proper usage of Requirements, Documentation, Verification and

Validation, and Structured Refactoring make it easier to rework existing software. Performance

issues can be greatly alleviated by using proper software Design. Regression and Integration Test-

ing can prevent regression errors. Finally, the issue of forgetting untracked bugs can be helped

by utilizing Issue Tracking, Unit Testing, Test-Driven Development, and Code Reviews. Survey 2

(Section 3.3) explores these four problems in more depth.

3.2.2.4 Knowledge Vs. Familiarity

This section is divided into an analysis of the data on the personal level and on the team

level.

Personal Level To determine whether a respondent’s rating of their general software engi-

neering knowledge correlated with their familiarity of various practices, we performed a series of

Pearson’s Chi-square tests. A significant result indicates that the two variables under study are

dependent, i.e. they are related. In this case we used α < .05 to judge significance. The second

column of Table 3.2 shows the χ2 and p-values for each practice. First, to get an overall sense of

this relationship, the second row All Practices, which combines the ratings for all practices into

a single variable, showed a significant relationship between knowledge and familiarity. Examin-

ing each practice in detail shows that there is a significant relationship between personal software

engineering knowledge and practice familiarity for only a subset of the practices:

• Software Lifecycles,

• Requirements,

• Basic Design,

• Test-Driven Development, and
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• Structured Refactoring.

To understand the potential source of non-significant relationships, we examined the distributions

of the responses for those practices. The data shows that for each of these practices (except for

Version Control), most respondents who rated themselves as having mostly or fully sufficient soft-

ware engineering knowledge indicated None or Low familiarity with the practice. That is, if we

compare the distribution of overall software engineering knowledge to the distribution of the level

of familiarity, the familiarity distribution is skewed towards the Low end of the scale. This skew

is more pronounced as the χ2 value decreases and the p-value increases. In the case of Version

Control, the skew was reversed with more than half of the respondents indicating High or Very

High familiarity. It is interesting to note that the practice with which the respondents appeared

to be most familiar, Version Control, does not specifically address any of the problems noted in

Section 3.2.2.3.

This finding is particularly interesting because one of the most frequent problems reported

in the scientific software development literature is difficulty with validation and verification [3,

4, 7, 10, 11, 16, 20]. Despite the importance of this problem, the respondents who considered

themselves to be knowledgeable about software engineering did not report high levels of familiarity

with the testing and V&V practices that would provide the most help.

Team Level The respondents’ views of their team’s level of knowledge (Column 3 in Table 3.2)

conformed much more closely to their ratings of their team’s familiarity with the individual prac-

tices with only the following practices failing to show a significant relationship:

• Integration Testing,

• Acceptance Testing, and
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Table 3.2: Knowledge and Familiarity Results - shaded cells indicate significance at the α < .05
level

Practice Personal SE Knowledge→
Practice Familiarity

Team SE Knowledge→
Practice Familiarity

All Practices χ2 = 133.936; p < .001 χ2 = 212.724; p < .001
Software Lifecycles χ2 = 18.048; p = .021 χ2 = 20.285; p = .009
Documentation χ2 = 15.403; p = .052 χ2 = 15.549; p = .049
Requirements χ2 = 21.294; p = .006 χ2 = 36.858; p < .000
Basic Design χ2 = 25.302; p = .001 χ2 = 29.201; p < .000
Intermediate Design χ2 = 13.832; p = .086 χ2 = 29.556; p < .000
Verification and
Validation

χ2 = 15.469; p = .051 χ2 = 27.301; p = .001

Unit Testing χ2 = 13.018; p = .111 χ2 = 25.565; p = .001
Integration Testing χ2 = 10.648; p = .222 χ2 = 14.892; p = .061
Acceptance Testing χ2 = 7.385; p = .496 χ2 = 10.797; p = .213
Regression Testing χ2 = 11.549; p = .172 χ2 = 12.898; p = .115
Version Control/
Change
Management

χ2 = 5.334; p = .721 χ2 = 21.636; p = .006

Issue/Bug Tracking χ2 = 10.373; p = .240 χ2 = 21.647; p = .006
Test-Driven
Development

χ2 = 19.511; p = .012 χ2 = 18.765; p = .016

Structured
Refactoring

χ2 = 15.793; p = .045 χ2 = 19.525; p = .012

Code Review χ2 = 18.843; p = .016 χ2 = 18.809; p = .016
Agile Methods χ2 = 7.418; p = .492 χ2 = 20.510; p = .009
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• Regression Testing.

In further analyzing the data, it became clear that the reason that more practices showed a

significant relationship between knowledge and familiarity at the team level than at the individual

level was because respondents rated team software engineering knowledge lower than individual

software engineering knowledge. In other words, this result was not due to respondents indicating

that their teammates were more familiar with the practices than they were individually. Despite

the overall higher level of agreement, the testing practices still did not show a significant level

of agreement. Further analysis of the three testing practices that were not significantly related

to software engineering knowledge showed that the respondents overall saw their team as having

relatively less familiarity with the testing practices. Together, these findings suggest scientific

software developers could benefit from more familiarity with the appropriate software engineering

practices.

3.2.2.5 Familiarity and Relevance Vs. Use

Similar to the previous analyses, for each practice, we compared the respondents familiarity

to their level of use and their perception of relevance of that practice. The results of χ2 tests showed

a significant relationship for relevance and for use for each practice (p < .001). This finding

suggests that scientific software developers are using the practices with which they are familiar. It

also suggests that they are not being forced to use practices that they do not believe are important.

3.2.2.6 Type of Developer Vs. Familiarity/Relevance/Use

There are two types of scientific software. Research software is developed primarily for

publishing a paper. Production software is developed primarily for use by others. Figure 3.5 shows

the percentage of respondents who devoted various fractions of their effort to production software
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Figure 3.5: Research vs. Production (First Survey)

(i.e. 0% is purely research while 100% is purely production). Based on this data, we divided the

sample into three groups (research, production, and mixed) for the analysis. We were surprised to

see a bimodal distribution, relatively few developers in the sample split their time evenly between

developing research and production software.

Our experiences led us to hypothesize that developers of research software would use a

few lightweight practices while developers of production software would use practices similar to

those used by traditional software developers (due to the needs of external users). Therefore, we

expected that survey responses would differ based upon the type of software developed by the

respondent.

Figure 3.6 shows a surprising result that the type of software a respondent develops does

not seem to make a difference in the level of overall familiarity with software engineering practices.
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Figure 3.6: Distribution of knowledge based on development type (First Survey)

This result suggests that developers of research software may be overrating their own knowledge

of software engineering.

For each practice, Figure 3.7 summarizes the responses for personal familiarity, relevance

and use, broken down by developer type. Overall, production developers gave the highest ratings,

followed by mixed developers, then by research developers. Despite this difference, the gap be-

tween the scores varied substantially across practices with the mixed group averaging near one

extreme or the other on most practices. The practices viewed as most relevant overall were Version

Control, Documentation, and Verification & Validation.

Interestingly, despite documentation requiring a significant amount of effort and potentially

providing less help to the creators of the software than the users, research developers viewed it as

the most relevant practice. A potential explanation for this result is a research developer might
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Figure 3.7: Summary of practices (First Survey)

understand documentation at a different level of detail than a production developer. For example,

the amount of documentation that may be sufficient for a research-oriented developer may be light

enough that they view the limited benefits as being worth the lower additional work.

For each practice, we used a χ2 test to determine whether there was a relationship between

a developer type (production, mixed, or research) and relevance. A significant relationship indi-

cates that developer type can be used to predict the relevance of a given practice. The relationship

is significant (α < .05) for all practices except: Documentation, Integration testing, Test-driven

development, and Agile methods. When combined with the results in Figure 3.7, we can con-

clude that production developers were statistically more likely to view most software engineering

practices as relevant.

The practices that had the largest spread between the level of relevance for the research-

oriented developers and the production-oriented developers were Issue & Bug Tracking, Regression

Testing, Acceptance Testing, Intermediate Design, and Version Control. In retrospect, it is not too

surprising that these practices showed such a large difference. In the case of Issue & Bug Track-

73



www.manaraa.com

ing, research-oriented software is often short-lived and used by its developers, so it is easy for

developers to believe it is not as important to track bugs formally. Similarly, Acceptance Testing is

not relevant to research-oriented software since that software is not meant for widespread external

usage. Regression Testing and Version Control are also less useful for any research-oriented devel-

oper who regards software as a disposable prototype and does not intend to re-use the software.

3.2.3 Threats to Validity

This section describes the internal, construct and external validity threats for this survey.

Internal Validity: Our approach of using a convenience sample led to the potential for Selection

Bias. Based upon the distribution of the degrees of the respondents, the mailing lists we used

were not as broadly representative of the scientific community as they could have been. Further,

the possibility exists that the high levels of self-rated general software engineering knowledge

may have occurred because the developers who felt their software engineering knowledge was

insufficient were less likely to participate. If this scenario occured, then our results represent the

“best-case” scenario, with the current level of community knowledge potentially being even lower.

Construct Validity: The survey did not provide definitions of the software engineering prac-

tices. The respondents may have answered the questions based on a different definitions than the

one we assumed. If this situation occurred, then the results of the survey would be less reliable.

Also, the survey asked the respondents to rate their knowledge of software engineering practices in

general using a three-point scale rather than a more standard five-point scale. The limited number

of scale choices could have led respondents to give the middle answer more often than if they had

more answer choices.

External Validity: Among the top three disciplines of respondents’ degree, two were Mathe-

matics and Computer Science. This distribution of respondents may not be representative of the
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larger scientific software community. As a result, the findings here may not be appropriate for all

scientific developers.

3.2.4 Conclusions

These results allow us to draw a number of conclusions that validate many of our personal

observations as well as reports from a prior survey [8]. A vast majority of respondents believed

that their software engineering knowledge and skills was at least “mostly sufficient” to achieve the

goals of their projects, however the personal level of knowledge and use of many “best practices”

from software engineering is relatively low. In addition, more than 1/3 of the respondents thought

that the skills of the overall scientific software community were not adequate to advance scientific

software development.

This result appears to constitute a serious self-diagnosed problem within the scientific soft-

ware community. However, while the developers were relatively successful at estimating their

overall level of software engineering knowledge (i.e. row 2 of Table 3.2), they were less knowl-

edgeable about a number of important practices, including all of the testing-related practices. We

found that developers are using the practices that they are both familiar with and feel are relevant

to their work. However, even the developers who see themselves as the most knowledgable in gen-

eral are not using software engineering practices that would help with many of the most frequently

encountered problems.

We found that the type of software a respondent develops is a useful predictor of whether

they viewed a particular practice as relevant. In particular, Issue & Bug Tracking, Regression

Testing, Acceptance Testing, Intermediate Design, and Version Control showed large differences

in the perception of usefulness between the Research and Production Developers.

However, this survey did have a number of weaknesses. First, it is possible that the respon-
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dents defined software engineering practices in a way different from our assumption. Second, a

significant number of developers were not using practices they saw as relevant, but we had no way

to gather information to understand this occurrence. Third, while we found the list of problems

given in Section 3.2.2.3, we did not have enough information to rank them in terms of frequency

and severity. Survey 2 addresses many of these shortcomings.

3.3 Survey 2

To gather more information about the use of software engineering practices in scientific

software development and to address some of the validity threats of the first survey, the goals of

the second survey were to:

• Expand and diversify the set of respondents,

• Evaluate the level of agreement with standard definitions for software engineering practices,

• Understand why developers did not use practices they found to be relevant,

• Analyze any effects of programming language on the use of software engineering practices,

• Prioritize the common problems reported by survey respondents, and

• Gather information about where scientific developers need the most support.

3.3.1 Design

To address these goals, Survey 2 has six parts. The complete version of the survey is avail-

able at: http://carver.cs.ua.edu/Data/Journals/CSE-Surveys/survey2.pdf.

To address the primary external validity threat from Survey 1, namely that the sample was

heavily drawn from the Mathematics & Statistics and Computer Science domains, we targeted

a broader population with the second survey. In addition to the mailing lists used in Survey 1,

we sent the second survey to the Numerical Analysis Digest mail list, the CSGF Alumni list, the
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NERSC list, the NCCS list, the SciComp and CSMD lists at Oak Ridge National Laboratory, the

NICS list, the NEAMS list, HPC-Announce, and the SIAM scientific software list. To determine

whether the respondent pool was broader than in Survey 1, the second survey contained the same

demographic questions. To obtain a more granular picture of the respondents’ views of their own

software engineering knowledge, we expanded the 3-point scale used in Survey 1 to a 5-point (1 -

not at all sufficient to 5 - entirely sufficient).

Second, a threat to construct validity from Survey 1 was our assumption that scientists

would use traditional definitions for software engineering practices. Based on further discussions

with members of the scientific community, we were concerned that this assumption may have been

flawed. To test this assumption, the survey asked respondents whether they agreed with a standard

definition (provided on the survey) of each practice. In the case where a respondent disagreed

with the given definition, he or she was given the opportunity to explain their disagreement. For

the sake of consistency in data analysis, we asked the respondents to answer the remaining survey

questions using the provided definition of each practice (if it differed from their own defintion).

Third, to better understand why developers did not use practices they found relevant and to

account for possible validity threats in Survey 1, this survey asked respondents to rate the level of

relevance and use for each software engineering practice on a 5-point scale (rather than a 3-point

scale). For any practice a respondent rated relevance two or more points higher than use, the survey

asked for an explanation of the discrepancy. The software engineering practices included on the

second survey are the same as in Survey 1 (Table 3.1), with the following exception. To address a

concern that two terms were not clearly distinguishable in Survey 1, we renamed Basic Design to

Low-Level Design and Intermediate Design to High-Level Design/Architecture.

Fourth, to provide a more complete picture of the development environment and understand
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why software engineering practices may have been underused, the survey investigated the effects of

programming language. The common belief is that scientific software developers overwhelmingly

use Fortran. Because there are fewer software engineering tools for Fortan than for other languages,

like C++ or Java, developers may use fewer software engineering practices. Based on the languages

commonly used by scientists, this question had the following answer choices: C, C++, Fortran,

Python, Matlab, Java, Haskell, Visual Basic, C#, Perl, and Mathematica, as well as an option to

write in other languages.

Fifth, Section 3.2.2.3 described four common problems faced by scientific developers: re-

work, performance, regression errors, and untracked bugs. To better understand the relative im-

portance of each problem, this survey asked the respondents to rank the relative frequency and the

relative severity of these problems.

Finally, to characterize the current state of software engineering practice adoption in the

scientific software community, the survey had two questions. First, the survey asked respondents

to describe the primary barriers faced by scientific software developers in regards to adopting

software engineering practices. Second, the survey asked the respondents to identify the most

important software engineering/development topics they wanted to learn.

3.3.2 Analysis

This section is organized around the goals presented in the study design. First, Sec-

tion 3.3.2.1 analyzes the respondent demographics to determine whether the sample is broader

than in Survey 1. Second, Section 3.3.2.2 analyzes the level of agreement the respondents had

with the provided definitions of software engineering terms. Third, Section 3.3.2.3 analyzes the re-

spondents’ familiarity with, use of, and perceived relevance of the individual software engineering

practices. Of particular interest is why developers do not use practices they view as being relevant.
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Fourth, Section 3.3.2.4 examines the programming languages used by the respondents and whether

those languages affect the use of software engineering practices. Finally, Section 3.3.2.5 analyzes

the respondents’ views of the frequency and severity of the common problems identified in Survey

1 (Section 3.2.2.3) along with the software engineering practices likely to address those problems.

3.3.2.1 Demographics

This survey received 151 responses. The respondent demographics indicate a larger and

more diverse sample than in Survey 1. Regarding the highest degree obtained, 80.1% of the re-

spondents held a Ph.D. while 15.2% held a Master’s. The four most common academic fields in

which people earned their highest degree were Engineering, Mathematics & Statistics, Physical

Sciences, and Computer Science. As in Survey 1, most respondents worked at a university. Unlike

Survey 1, which had a bimodal distribution between research and production developers, as shown

in Figure 3.8, the respondents to Survey 2 were more heavily weighted towards research software.

3.3.2.2 Definition of Practices

Somewhat surprisingly, the survey results indicated that less than five percent of respon-

dents disagreed with any definition, save two: Software Lifecycles (31 disagreements) and Agile

methods (18 disagreements).

The definition for Software Lifecycles was: “A structure imposed on the development of

a software system in order to ensure higher software quality.” The disagreements fell into two

categories. First, some respondents thought the term should be more generic, that is, a description

of what happens over the life of a project rather that something that can be imposed or affects the

quality of the produced software. Second, some respondents thought either that the term “quality”

was too generic to encompass the goals of an explicit lifecycle model or that there were other goals

for using a lifecycle model in addition to quality.
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Figure 3.8: Research vs. Production (Second Survey)

The definition for Agile Methods was: “A group of software methodologies (e.g., Extreme

Programming, Scrum, Kanban) that focus on team member interaction, always having working

software throughout the lifecycle, close customer collaboration, and responding to change.” The

most common reason respondents gave for their disagreement was that they were simply not fa-

miliar with the term. As a side note, lack of familiarity is not really a disagreement. Only 4

disagreements were for reasons other than a lack of familiarity.

3.3.2.3 Individual Practice Analysis

In addition to analyzing the respondents’ agreement with the given definitions, we also

repeated the analysis from Survey 1 in terms of overall knowledge, familiarity with the practices,

use of the practices, and the relevance of the practices to the respondents’ work.
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Knowledge Vs. Familiarity To determine whether a respondent’s rating of their general soft-

ware engineering knowledge correlated to their familiarity with various practices, we performed

a series of Pearson’s Chi-squared tests. A significant result indicates that the two variables under

study are dependent, i.e. they are related. In this case we used α < .05 to judge significance.

Table 3.3 shows the χ2 and p-values for each practice. First, to get an overall sense of this rela-

tionship, the second row All Practices, which combines the ratings for all practices into a single

variable, showed a significant relationship between knowledge and familiarity. Examining each

practice in detail shows that there is a significant relationship between personal software engi-

neering knowledge and practice familiarity for only Software Lifecycles and Code Reviews. To

understand the lack of significant relationships in more detail, we examined the distributions of

the responses. The data shows that for each of these practices, most respondents rated themselves

as having Medium or High familiarity with the practice, regardless of how they rated their over-

all software engineering knowledge. That is, if we compare the distribution of overall software

engineering knowledge to the distribution of the level of familiarity, the familiarity distribution is

skewed towards the High end of the scale. This skew is more pronounced as the χ2 value decreases

and the p-value increases.

Familiarity/Relevance Vs. Use We expected that each respondent’s view of their own famil-

iarity with a practice and the relevance of that practice would once again be good predictors for use

of the practice. The Chi-squared analysis confirms the relationship between familiarity and rele-

vance found in Survey 1 (Section 3.2.2.5). Once again, we found that scientific software developers

are using the practices that they are familiar with and not being forced to use practices that they do

not see as relevant. Figure 3.9 summarizes the 382 responses to the question of why respondents

did not use a practice that they viewed as relevant. Notably, the largest group of responses falls
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Table 3.3: Knowledge and Familiarity Results - shaded cells indicate significance at the α < .05
level

Practice Personal SE Knowledge→
Practice Familiarity

All Practices χ2 = 76.184; p < .000
Requirements χ2 = 14.577; p = .265
Documentation χ2 = 12.363; p = .194
Verification & Validation χ2 = 7.361; p = .600
Structured Refactoring χ2 = 10.447; p = .577
High Level Design χ2 = 19.936; p = .068
Low Level Design χ2 = 14.982; p = .242
Regression Testing χ2 = 13.580; p = .328
Integration Testing χ2 = 19.563; p = .076
Issue Tracking χ2 = 10.863; p = .541
Unit Testing χ2 = 17.519; p = .131
Test-Driven Development χ2 = 14.769; p = .254
Code Reviews χ2 = 23.082; p = .027
Software Lifecycles χ2 = 38.704; p < .001

under "Little Relevance" which means that, while they rated the relevance of the practice higher

than they did their usage of the practice, they still stated that the relevance was low enough to

justify not using the practice.

Type of Developer Vs. Familiarity/Relevance/Use As in Survey 1, we expected to find a

binary distribution between research and production developers. Instead, as shown in Figure 3.8,

the respondents to the second survey considered themselves primarily research developers. Based

on Figure 3.10, it appears that the production developers in Survey 2 were slightly more likely to

view their level of software engineering knowledge as Mostly Sufficient or Fully Sufficient than the

research developers, however this difference is not significant. This lack of relationship suggests

that our earlier belief, stated in Section 3.2.2.6, that production developers would be more likely to

view software engineering practices as relevant may not be true.

For each practice, Figure 3.11 summarizes the responses for personal familiarity, relevance,
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Figure 3.9: Reasons why developers did not use practices they felt were relevant

Figure 3.10: Distribution of knowledge based on development type (Second Survey)
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Figure 3.11: Summary of practices (Second Survey)

and use, broken down by developer type. As before, in every case production developers were the

most familiar with and most likely to use the software engineering practices. However, unlike in

Survey 1, the mixed developers came in slightly lower than the research developers in terms of

knowledge and use in a few cases.

3.3.2.4 Languages

While we expected Fortran would be the most commonly used language, as Figure 3.12

shows, C++ is slightly more popular than Fortran, with C, MATLAB, and Python trailing close

behind. In addition, most respondents used multiple languages (an average of three). These results

suggest one of two things. Either scientific software development may be shifting away from

its Fortran dominance or the survey respondents were not representative of the general scientific

software community. If the first case is true, it would be promising, as software engineers have

developed many more tools for C++ and Python than for Fortran.

Regarding whether language affected the use of software engineering practices, we hypoth-

esized that developers who use Fortran would be less likely to use the various software engineering
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Figure 3.12: Languages used in scientific software

practices than developers who did not use Fortran. To test this hypothesis, we divided the sample

into two groups: (1) the respondents who used Fortran and (2) the respondents who did not use

Fortran. In order to determine if there was any effect on practice usage based upon programming

language, we performed a Pearson’s Chi-squared test to compare the distribution of responses

about each practice between these two groups. The results showed that there was no significant

difference between the groups for any of the practices. Therefore, use of Fortran is not a signifi-

cant predictor of whether a developer will use various practices. Note that the survey did not ask

respondents to link specific practices to programming languages. Therefore, for the respondents

who used multiple languages, we cannot determine which practices went with which languages.

3.3.2.5 Primary Problems

In terms of the most frequent types of problems, the respondents ranked rework first, fol-

lowed by performance issues, regression errors, and finally forgetting to fix untracked bugs. To

better evaluate whether the respondents really understood how various software engineering prac-

tices could help address these problems, we mapped each software engineering practice to one of

the four problems. We performed this mapping based upon our own experience with traditional
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software engineering environments. Figure 3.11, discussed throughout this section, maps the soft-

ware engineering practices to the reported problems. The remainder of this section provides a

justification for the mapping.

Rework Rework was the most frequent problem reported by the respondents. Research and

production developers both tended to view rework as a moderately to highly frequent problem.

Both groups of developers also tended to view the severity of rework to be moderate to high. Five

software engineering practices included on the survey should either reduce the need for rework or

reduce the effort required to perform rework: requirements, verification & validation, high-level

design, documentation, and structured refactoring.

Proper usage of requirements helps reduce the frequency of rework by determining what

the software needs to do prior to implementation, thereby reducing the chances of unanticipated

changes. Additionally, in an agile environment, like most scientific software projects, the proper

use of requirements helps developers document and manage evolving requirements. The process of

creating and using requirements is highly relevant and moderately used by production developers.

Conversely, requirements have low relevance and low usage by research developers. The most

common reasons that respondents gave for not creating requirements were:

• They had limited people to create the requirements,

• They felt that there was no need to create specific requirements for their software, and

• They have no standardized procedure for producing requirements.

The use of verification & validation practices throughout the development process decrease

the likelihood of rework. By identifying and removing problems during development, fewer prob-

lems must be fixed via rework. Verification & validation practices were among the highest ranked
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practices overall, with both research developers and production developers reporing high or very

high relevance and use. The main reasons that respondents gave for not performing verification &

validation were:

• They had too little time to verify and validate their software, and

• They felt that verification & validation had little relevance to their work.

Use of high-level design can help prevent the need for rework. Similar to the use of re-

quirements, proper design will help developers understand the system and therefore should reduce

the chance that developers will introduce defects requiring rework. Once again, high-level design

showed a disparity between research developers and production developers in both use and rel-

evance. Research developers viewed high-level design as having a moderate level of relevance,

while production developers viewed it as having a high level of relevance.

Unlike the previous three practices, proper documentation does not necessarily prevent the

need for rework. However, the presence of complete and accurate documentation, which provides

readily-available information about the software, can significantly lower the amount of effort re-

quired to perform rework. Documentation is also among the most relevant and used practices in

for both the research and production developers. The most common reasons that respondents gave

for not creating documentation were:

• They had too few people to create the documents,

• They had too little time to create the documents,

• They felt that documentation was not needed because they were primarily focused on re-

search, and

• They had no standardized procedure for producing requirements documentation.
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Finally, structured refactoring both prevents the need for in-depth rework and reduces the

effort required to perform rework. It prevents the need for rework by allowing developers to fix

design deficiencies discovered after the design is finalized without changing the functionality of

the software. Additionally, if refactoring is used to reduce software complexity and increase main-

tainability, then it can also reduce rework effort. In this case, the production developers reported

only a slightly higher level of usage than did research developers. However, production developers

considered structured refactoring to be noticeably more relevant than did research developers. The

primary reasons that the respondents gave for not performing structured refactoring were:

• They did not view structured refactoring as a top priority and

• They had no standardized procedure for performing structured refactoring.

The benefits of these practices are not readily obvious. The first step forward in addressing

this problem is to better inform scientific software developers about how utilizing these practices

can reduce the need for expensive rework. Secondly, one of the main reasons given for not using

half of the practices was that they had no standardized procedure to perform the practices. To

address this problem, software engineers will need to work with scientific software developers to

produce these standardized procedures.

Performance Issues Survey respondents reported performance issues as the second most com-

mon problem. However, they considered performance issues to be somewhat less severe than

the other problems. Research and production developers viewed performance issues to be of a

moderate frequency, but production developers viewed it as being significantly more severe (t =

-2.846, p=.005). The two software engineering practices that most directly relate to improving

88



www.manaraa.com

performance are high-level design and low-level design. In both cases design decisions can either

optimize performance or slow down performance.

High-level design, or architecture, affects global performance by determining how the

system is organized and what types of communication must occur. Note that high-level design is

also relevant for rework. As discussed previously, production developers viewed high-level design

as being more relevant than did research developers. Many respondents who reported a low level

of use of high-level design claimed that they had limited familiarity with it. Of those who believed

they were familiar with high-level design, a large number saw it as having little relevance. Most

of those who saw high-level design as having little relevance based this belief upon the fact that

they were working either on small projects or with legacy code. The respondents stated that both

situations force the developer to use a given architecture without being able to modify it.

Low-level design focuses more on optimizing the performance within a module through use

of appropriate data structures and algorithms. Production developers reported that low-level design

was both highly relevant to their work and highly used. Conversely, research developers reported

only a medium relvance and a medium/low level of use in their projects. Many respondents also

found the lack of a strong high-level design made it impossible for them to produce a detailed

low-level design. The amount of upfront effort required to produce low-level design hampered the

ability of developers to utilize the practice. These observations indicate that there is a need for

scientific software developers to better understand the benefits of low-level design.

The low usage of low-level design among research developers hampers their ability to take

advantage of the performance increase that could be gained from optimizing algorithms within

each software module. Similar to the other practices, we must identify which high-level and low-
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level design approaches are most appropriate for the scientific software domain and educate devel-

opers appropriately.

Regression Errors Survey respondents reported regression errors as the third most frequent

problem. While, production developers indicated that regression errors were more problematic

than research developers did (t=-2.937, p=.004), there was little difference in the frequency of

regression errors. Two types of testing can help to address regression errors: regression testing and

integration testing.

The goal of regression testing is to detect regression errors. Therefore, this practice is

clearly the most relevant to the problem. The usage of regression testing by research developers

has a wide variance around the mean shown in Figure 3.11. Conversely, production developers

report a very high level of use. Research developers further tend to view regression testing as

having a high level of relevance with most production developers rating it as very highly relevant.

Regression testing was seen as important by almost all of the respondents who commented on

their usage of it. The reasons given for not utilizing regression testing were largely related to time

constraints or a lack of familiarity with how to perform it. Another common issue, however, was

that the developers did not have an automated regression testing tool for a large scientific problem.

While it is not specifically intended to detect regression errors, integration testing can be

used to verify that no new regression errors have entered the software when new code is added.

Much like regression testing, integration testing was used only by some research developers. In

addition, there was no real pattern in the research developers’ views of the relevance of integration

testing. Production developers, however, reported a high level of both usage and relevance. The

respondents also saw a considerable need for integration testing that was hindered by a few un-

derlying problems. In many cases, developers did not have the support for or familiarity with unit
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testing, which is generally a prerequisite to building integration tests. Otherwise, most respondents

did not do the integration of software units themselves and they assumed that the developer who

did the integration performed any needed tests. These problems would also make it difficult to

implement regression testing because it relies upon an existing test suite for maximum efficiency.

Regression testing also requires all developers involved with the software to use it.

Addressing these issues will require two steps. First, scientific software developers need

to be better trained in unit testing. In order to do this training, scientific software developers will

need to work with software engineers to determine what is the correct size of a code “unit” to

provide useful testing information. Secondly, once they are able to perform unit tests, scientific

software developers will need automated regression testing tools developed to work specifically in

the scientific software environment.

Untracked Bugs While this problem is the least frequent, it is the most severe. Unlike the

other problems, there is no relationship between either severity or frequency and type of devel-

oper (research or production). Four software engineering practices from the survey address this

problem: issue/bug tracking, unit testing, code reviews, and test-driven development.

Using issue/bug tracking software allows scientific software developers to track bugs with

a minimal amount of extra work. Despite developer types not affecting the views of frequency

and severity of this problem, there was a strong divide on the use of issue/bug tracking software

between research developers and production developers. Research developers reported a low level

of relevance and use, while production developers reported a high level of relevance and use. The

developers who had a discrepancy between relevance and use reported four major reasons for the

discrepancy:
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1. They felt that it was not relevant to their development or of little use;

2. They had no standardized procedure for utilizing issue/bug tracking;

3. They prefered other methods for keeping track of bugs; and

4. Tracking issues and bugs was not their top priority.

In addition to issue/bug tracking, testing methods need to be used to detect these bugs

during the development process instead of relying on the bugs being found afterwards. It is con-

siderably more expensive to correct a bug after the software is deemed complete and in use. Unit

testing provides the ability to check individual parts of the software without testing it in its entirety.

Unit testing showed a high level of both relevance and use across both types of developers, with

production developers viewing it as slightly more relevant and being slightly more likely to use it.

The respondents highlighted three main discrepencies between relevance and use with unit testing:

1. Projects build on legacy code prevents them from utilizing unit testing to its fullest extent;

2. Use of unit testing creates a large amount of extra up-front work; and

3. Not familiar enough with the practice to implement it.

Code reviews are important because they provide a chance to find and fix mistakes that

were overlooked in the design phase. Similar to unit testing, there was no significant relationship

between the usage and relevance of code reviews and type of developer (research or production).

The distribution of answers for usage and relevance for each type of developers was approximately

normal. Use of code reviews was primarily limited by two factors. First, the developer was often

not working in a large enough group to perform formal code reviews. The problem of group size

is complicated by the fact that scientific developers are frequently exploring questions that are too

complicated for external developers to understand the code. Second, many of the benefits of code
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reviews are not directly obvious (i.e. determining factors that cause bugs to enter code reduces the

chances of similar bugs entering later codes). This lack of recognition of the benefits results in a

development team giving the review process a lower priority than other tasks. This observation

is important because the additional benefits from code reviews result in the developers producing

better code that requires less effort to test and review.

Test-driven development is a development process that is particularly well-suited to the

development of complex software. It forces the developer to add one piece of functionality at a

time, simplifying the testing process. Because test-driven development requires the developers

to write a test even before they develop the code that will satisfy the requirements of that test, it

makes it less likely for untracked bugs to enter into the software in the first place. The results

for the usage and relevance of test-driven development, however, were considerably different from

the other results. While research developers were as likely as production developers to use test-

driven development, they viewed it as more relevant than did production developers. A number

of the respondents who claimed they did not use test-driven development unintentionally used

an approach that could be adapted to test-driven development. They used an iterative method of

adding a feature and then testing to be sure it worked properly. It would be easy to adapt this

method to test-driven development by simply changing the order and writing the test of the desired

functionality before implementing the procedure. There were four major barriers to the adoption

of test-driven development: not enough resources, lack of coherent high and low level designs,

complicates the creation of test cases, and not familiar enough with the practice to implement it.

3.3.3 Conclusion

Based on this analysis, we can draw a number of conclusions from Survey 2. First, the

respondents represented a broader sample of the scientific development community. Second, the
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responses confirmed that scientific software developers generally used the same definitions for

software engineering practices as do software engineers. Less than five percent of the respondents

disagreed with the definition for each practice except for Software Lifecycles and Agile Methods.

This finding means that a threat to validity in Survey 1 may have had minimal, if any, effect on the

conclusions drawn. Third, we analyzed why developers did not use practices they viewed as being

relevant and found the primary reasons were:

1. They view the practice as having little relevance,

2. They have no formal method for performing the practices, and

3. They have too limited familiarity with the practice to utilize it.

Notably, the most popular reason was that they felt the practice had little relevance despite rating

the relevance of the practice higher than they did their use of the practice. This inconsistency

might be because they viewed the relevance to be below a minimum threshold. Addressing these

problems will require software engineers to work with scientific software developers to provide ev-

idence of the usefulness of the practices in their environments, produce clear methods for utilizing

the practices, and provide appropriate training.

Another promising finding is that many respondents already use high-level languages that

have significant support from the traditional software engineering world. This result means that

many tools currently exist that may, with minor tweaking, be able to help scientific software de-

velopers employ the software engineering practices most likely to help address their problems.

The remainder of this section examines the four major problems identified in Section 3.2.2.3

and discussed in Section 3.3.2.5.
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Rework While rework was the most frequent problem encountered by both research and pro-

duction developers, most of the practices that should help address this problem were only used at a

low to medium level by research developers with the exception of verification & validation. Even

more interestingly, despite recognizing that rework was a frequent and somewhat severe problem,

most developers only saw these practices as being of moderate relevance to their work.

Performance Issues Performance issues tied with rework for being the most frequent problem

encountered by production developers, but only the second most frequent for research developers.

However, both types of developers viewed performance issues as being the least severe. Perhaps

because of this relatively low severity rating, the relevance and use of the practices that should

help address this problem was only at a moderate level among research developers. Conversely,

production developers viewed the practices at a high level of use and relevance.

Regression Errors Both production and research developers viewed regression errors as the

second most frequently encountered problem. Production developers viewed regression errors

as the most severe problem, but research developers viewed it as the third most severe. As we

would expect from the varying severity, production developers saw the relevance of the practices

that address regression errors to be very high, with use also falling between high and very high.

Research developers, on the other hand, only saw the use and relevance to be at only a moderate

level.

Untracked Bugs Research and production developers viewed this problem as the first and

second most severe, respectively. Despite the importance of this problem, none of the respondents

who commented used a formal issue/bug tracking system. Instead they either used mailing lists

or tried to keep track of bugs mentally. However, many of the respondents did believe that the

adoption of such a system would be beneficial. Notably, both production and research developers

95



www.manaraa.com

viewed Test-driven Development and Code Reviews to be at a low to medium level of use and

relevance.

3.3.4 Threats to Validity

While this survey eliminated the threats to external and construct validity from Survey 1,

potential threats to internal validity remained as well as a new threat to construct validity.

Internal Validity: Our approach led to the potential for Selection Bias. While broader than the

mailing lists used for Survey 1, the mailing lists we used were not neccessarily fully representative

of the scientific community as they could have been. The nature of the survey as well as our desire

to preserve anonymity lead us to not ask survey respondents to indicate from which mailing list(s)

they received the survey invitation or if they had participated in Survey 1. If there was a large

overlap between the respondents of the two surveys, then the ability to generalize results would

be limited. However, the demographics of the respondents to Survey 2 suggest that this threat

is not serious. Because of the need for anonymity, an important caveat is that the data reported

from the survey is drawn from the opinions of the respondents and may or may not be consistent

with the true state of software engineering practice in the scientific software community. Further,

the possibility still exists that the high levels of self-rated general software engineering knowledge

may have occurred because the developers who felt their software engineering knowledge was

insufficient were less likely to participate. If this scenario occured, then our results represent the

“best-case” scenario, with the current level of community knowledge potentially being even lower.

Construct Validity As noted in Section 3.3.2.4, many respondents utilized more than one lan-

guage. Therefore, a threat to construct validity is that we cannot map specific practices to individual

languages. It is possible, for example, that someone who indicated using both C++ and Fortran and
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indicated high usage of Version Control could have used Version Control only when programming

in C++. In our analysis we had to assume the use of the practice applied to all indicated languages.

3.4 Analysis and Conclusions Across Both Surveys

This section treats Survey 1 and Survey 2 as a series that, when taken together, can provide

more insight than either survey individually. By replicating and expanding upon Survey 1, the

results of Survey 2 are able to both confirm and extend the findings of Survey 1. In general, the

results of Survey 2 confirmed the results of Survey 1. The remainder of this section provides details

on the observations across both surveys.

3.4.1 Demographics

The demographics of the respondent pools differed across the surveys. Based on two key

demographics, we can conclude that the respondents to the two surveys represented different seg-

ments of the scientific software population. First, while the respondents to Survey 1 were heavily

weighted towards Mathematics & Statistics and Computer Science domains, the respondents to

Survey 2 represented a more diverse sample (including also respondents from Engineering and

Physical Sciences). Second, the distribution of the respondents between production software and

research software differed between the two surveys. These observations are important because the

results of the two surveys were otherwise similar. Therefore, the more diverse sample indicates

that the results can generalize to the larger scientific software community with more confidence.

3.4.2 Knowledge Source

One of the important questions for any community to understand is where its members

obtain knowledge about key concepts. In the more traditional software engineering world, the

majority of the community members have some type of formal training in computer science or

software engineering. Our anecdotal assessment of the scientific software community, prior to the
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surveys, was that its members obtained their knowledge through vastly different means. The results

from both surveys, which were consistent, confirmed this anecdotal conclusion. Respondents to

both surveys indicated the most frequent method of gaining software engineering knowledge was

to obtain it on their own. Furthermore, the respondents indicated that attending training courses

(which would likely also include university courses) was the least frequent method of obtaining

knowledge. While a developer can obtain some level of useful knowledge on his or her own,

generally speaking that knowledge is not sufficient to meet the demands of developing complex

scientific software (as indicated by the relatively low familiarity and use of a number of key soft-

ware engineering practices).

3.4.3 Individual Practice Analysis

One of the most important purposes of these surveys was to get a solid picture of the

current state of software engineering knowledge in the scientific software development community.

One of the common issues is that developers tend to "not know what they don’t know." In this

case, existing software engineering practices could help scientific software developers be more

effective and efficient. Our hypothesis was that scientific developers often do not know enough

about software engineering to be aware of relevant practices. The results from the two surveys

tended to confirm this hypothesis. In many cases, especially in Survey 1, even the respondents who

thought they were knowledgeable about software engineering had little familiarity with individual

software engineering practices. While the respondents to Survey 2 evidence a similar discrepancy

between overall knowledge and knowledge of specific practices, they actually tended to be more

familiar with the practices. However, in both surveys scientific software developers reported low

rates of knowledge and use of some common testing practices. Without using effective testing

procedures, software developers in any domain cannot have confidence in the accuracy of the
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results produced by the software. This problem is particularly important in the scientific domain,

where it is necessary for developers to determine whether the source of incorrect results is the

underlying scientific theory or simply a software mistake. This type of misunderstanding could

potentially allow valuable scientific results to be dismissed because of software errors rather than

because of scientific problems.

3.5 Conclusion

Overall, the results from the two surveys were largely consistent. This consistency leads us

to believe that, overall, software engineering practices are underused in the development of scien-

tific software. Furthermore, scientific developers often lack the familiarity with these practices that

would even allow them to make an informed decision about their relevance to the current project.

Conversely, it does appear from the results that those developers whose software is typically used

by external users (i.e. production software) were more likely to be using some of the important

software engineering practices. We argue that one of the important causes for the lack of knowl-

edge and use of appropriate software engineering practices is the general lack of formal training

received by scientific developers. This lack of formal education limits the developers’ ability to

take full advantage of practices that could greatly aid their software development. One potential

solution to this lack of formal education is for members of the software engineering community to

make concerted efforts for outreach into the scientific software community. Another potential solu-

tion is to better document and share instances of successful use of a software engineering practice

in the development of scientific software.
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Chapter 4

CASE STUDIES

4.1 Introduction

Scientists and engineers use software models to replace dangerous or expensive experimen-

tation or to conduct studies that would not be possible otherwise. These three examples illustrate

how software is used in various scientific domains. First, in climate science, software models allow

meteorologists to forecast the weather conditions and make predictions about dangerous weather

events. Without these models, meteorologists are limited to manually examining historical weather

patterns to extrapolate predictions about future weather. This historical approach is time-intensive,

which is problematic in the face of the rapid pace of changing weather conditions. Additionally,

the historical approach primarily gives general predictions, which means it is likely less accurate

than the results given from the models. Second, in fields like earth science, a different problem

emerges. Many of the phenomena occur so slowly that it is inefficient to experiment with them

physically. Software models allow earth scientists to speed up the effects of their experiments.

Third, in fields like nuclear science, yet a different problem emerges, the problem of safety. It

is much safer for scientists to simulate the effects of nuclear reactions than to conduct a physical

experiment.

As these examples highlight, scientists and engineers are increasingly reliant on the results

of software simulations to inform their decision-making process. Because of this reliance, it is vital

for the software to return accurate results. While the correctness of the science behind the software
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is the most important factor in the accuracy of results, the correctness and quality of the software

is also of primary importance. The field of software engineering provides tools and methods that

help developers increase and verify software quality.

The specific areas of scientific software quality we seek to improve are maintainability

and reusability. As these two qualities greatly affect the cost of developing software in traditional

software engineering domains [8, 9], we hypothesize that the same would prove true in the sci-

entific software domain. In order to evaluate this hypothesis, we will look at the three sub-areas

of Readability, Preservation of Knowledge, and Testing. Improvement in each of these areas has

been shown to improve both maintainability and reusability of traditional software engineering

software [3, 10, 20, 44]. In traditional software engineering, code reviews have been found to

have a significant impact on the readability of software and the preservation of knowledge among

members of the development team [3]. Also, regression testing has been shown to be an effective

method of detecting failures that have been introduced by new development on software that has

previously been determined to be correct [22, 30, 31, 35, 46]. Finally, integration testing has been

shown to be effective at helping developers identify errors that occur when there are miscommu-

nications between components of a system that have been tested individually [25, 27]. In order to

show that these techniques will have similar effects on scientific software development, we have

formed a number of hypotheses:

• The use of peer code reviews will significantly improve the readability of scientific software.

• The use of peer code reviews will significantly increase the preservation of knowledge across

a scientific software development team.
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• The use of regression and integration testing in concert will provide a means for scientific

software developers to show that their software is “more correct.”

This paper presents the results of two examples that show software engineering techniques

can be applied or modified to increase the maintainability and reusability of scientific software.

The first example consists of teaching scientific software development teams to utilize the practice

of peer code review in order to increase the maintainability of their software through increasing

the readability of the code and the preservation of knowledge across the team. The second exam-

ple consists of developing and evaluating an semi-automated testing tool that scientific software

developers can use to perform integration and regression testing on their software while requiring

minimal extra effort on their software. In order to do create this tool, we utilized open-source

scientific software projects as well as output from other scientific codes to create the testing suite.

The use of open source projects is important because these projects have largely been accepted as

providing useful tools for scientific software development, if a tool does not function with these

open source projects then its usefulness will be limited.

In software that will be used for an extended period of time, the most expensive part of

development is in the maintenance stage. In some cases, this stage can take up as much as 90%

of the total effort devoted to a software project. While many scientific software projects are small

projects that serve as more proof-of-concept than long term software development efforts, there

are also a large number of projects, such as library development or searches for new materials,

that are continually developed over many years. These projects, just as with traditional software

engineering projects, will necessarily undergo a number of changes in their lifecycles. Because

of this need for continued change, the developers will be required to perform maintenance tasks
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on the software. Software engineers have determined that many factors contribute to the ease of

maintaining software, including readability, preservation of knowledge across a team, and testing.

In addition to long-term projects, scientific software developers frequently explore many

similar phenomena. The development process for these similar projects would be simplified if they

could more easily reuse software. Many of the same factors that contribute to maintainability also

contribute to reusability: readability, preservation of knowledge, and testing.

4.1.1 Subject Selection

The subjects for both of these examples are a team of scientific software developers at

the Oak Ridge National Laboratory (ORNL). The team consists of four primary developers, all

scientists. They develop materials simulations in C++ that are run both locally on the PCs of the

team members and on the Titan Supercomputer. The software written by the team is primarily

created in C++. We chose to work with this team because they were a team of scientists who

were interested in partnering with software engineers to learn how to increase the quality of their

software. Between the two examples one of the members of the team left and another member

joined, but the overall expertise of the team remained the same.

This paper has three primary contributions.

1. An example of peer code review being utilized in a scientific software development project.

2. A checklist that can be used to help guide the peer code review process to identify common

problems in scientific software development.

3. A tool that helps scientific software developers to perform integration and regression testing

on their software.

The remainder of this paper will be structured as follows: Section 4.2 will present back-

105



www.manaraa.com

ground information on software engineering for scientific software. Section 4.3 describes the Peer

Code Review example. Section 4.4 describes the Testing example. Section 4.5 provides conclu-

sions from across both examples.

4.2 Background

Because a scientific or engineering problem must be sufficiently complex to require the de-

velopment of software, developers often need advanced technical training, most frequently a PhD,

in the area to understand the needs of the problem. This situation differs from a traditional soft-

ware development environment in which deep domain knowledge is not as strictly required. This

requirement of detailed domain knowledge frequently means that a scientific software developer

lacks the software development knowledge that a “traditional” software developer would have. In

turn, various aspects of software quality may be lower. Software engineering provides techniques

such as code reviews and testing that help developers. Code reviews help developers to reduce the

number of defects in source code, increase the readability of code, and transfer knowledge between

members of a software development team [13]. Integration testing helps developers find and fix

problems that only become visible when multiple components of their software interact with one

another [27]. Regression testing helps developers ensure that new development does not introduce

errors in their software that was previously correct [2]. However, it appears that the prevalence of

their use in scientific software is relatively low [36].

In addition to the software quality problems, scientists and engineers have a problem with

productivity. According to Faulk et al., even though the speed of computers is rapidly increasing,

it is becoming more difficult for scientists to actually do useful work. Faulk says that the reason

for this situation is that “the dominant barriers to productivity improvement are in the software

processes.” In other words, the development approach that is primarily used in scientific software
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contains bottlenecks. Faulk also claims that these bottlenecks cannot be removed “without funda-

mentally changing the way scientific software is developed” [18]. A major strength of software

engineering is that it can increase productivity. Therefore, low productivity is another issue in

which software engineering techniques can help scientific software developers.

Scientific software projects have a common set of characteristics which, according to Basili

et al. [5], provide a source of knowledge that is essential to understand the claims made about the

application of software engineering to scientific software projects.

First, many scientific software developers learn software development from other scientific

software developers rather than via a formal software engineering education [11]. Unfortunately,

the other scientific software developers also tend to lack formal software engineering training. Be-

cause scientific software developers do not have formal training, their ideas of what constitutes

software engineering is limited. This lack of training means that they are likely unaware of tech-

niques they could use that would allow them to have a much greater level of control over the quality

of their code. Even when scientific software developers are familiar with certain software engi-

neering techniques, they may not know how to properly apply them, leading them to decide that

the cost of using software engineering techniques outweighs the benefits they provide.

Second, many of the software projects are not initially designed to be large, but do become

large after initial trials prove successful [5]. Because the programs are not intended to be large,

scientific software developers often do not take care to ensure that their code is easy to maintain.

When scientific software developers have to later modify their code to add new features, these

modifications require more effort than they should.

A final characteristic of scientific software is that it is generally used internally, that is either

by its creator or by another member of the creator’s research group [5]. Because the software is
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used internally, the belief is that understandability by external developers is less important. As

a result, the software is often difficult to read and poorly commented. These practices lead to

software that is less maintainable, which is problematic if someone new joins the team or if one of

the primary developers stops working on the code for some period and then returns to it.

It is important to understand that there is not one monolithic community of scientific soft-

ware developers. According to Basili et al. [5], there are three primary variables that characterize

the development of software for any individual researcher or group of researchers. The first vari-

able is team size. In scientific software, the size of a team is usually either a single researcher who

serves as his own developer or a large group. According to Basili, the large groups tend to consist

of multiple groups that may not even be co-located. The second variable is the useful lifetime of

the software. Software that is only expected to be executed once or twice does not require as much

formal software engineering or need as much optimization as software that is going to be used

multiple times, i.e. a scientific simulation or a scientific library. Additionally, when software is

only executed once or twice, the effort required to optimize its performance can easily overwhelm

the speedup it generates. The final variable is the intended users of the software. The users can be

internal, external, or both. In the case of internal users, the developers do not tend to care as much

about the quality of the user interface because they will be using the software themselves. When

the software is going to be used by external users, the developers have to place more emphasis on

the quality of the user interface as well as the qualities of readability and maintainability in order

for others to be able to use it. Cases where both internal and external users are supported result in

an additional layer of complication because multiple software versions must be maintained.

Traditional software development focuses on fulfilling the needs of a customer. This fo-

cus on the process has led software engineers to emphasize quality of the code itself. Scientific

108



www.manaraa.com

software, on the other hand, exists to answer scientific or engineering questions that are difficult

or impossible to answer experimentally due to constraints on time, expense, or the danger of per-

forming the experiment. Because the most important goal for scientific software developers is the

creation of new scientific knowledge, the relative emphasis scientific software developers place on

various software quality attributes (i.e. correctness of code, maintainability, and reliability) has

been historically lower than that given by traditional software developers [12]. Furthermore, there

is no guarantee that software engineering techniques will work for scientific software development

without modification. In fact, Segal, et al. suggest that software engineering techniques would

have to be tailored for use in scientific software development [41].

4.3 Case Study 1: Peer Code Review

4.3.1 Problem and Research Objective

In order for a development team to maintain software, each part of the software must be

readable to the entire team, as well as any new members that join the team after a portion of

development is complete. We believe peer code reviews will increase the readability of scientific

software because it has proven to do so in traditional software. Additionally, because at least two

people are involved in the process, any issues that make sense to the developer but not a second

observer can then be corrected.

Furthermore, one of the biggest challenges to reading a piece of code is the jarring transi-

tion between different coding standards, such as the use of camel-case or underscores to indicate

spacing in variable names. In order to counter this challenge, a team should use one set of uniform

standards.

Finally, we believe that the use of peer code reviews will significantly increase the preserva-

tion of knowledge across a scientific software development team as code reviews have been shown
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to be an effective means of knowledge transmission in traditional software engineering develop-

ment.

4.3.2 Background

Peer code reviews provide a wide range of benefits to software development teams. In

traditional software engineering development, the use of peer code reviews has been found to have

a wide range of benefits [13]. First, peer code reviews result in increased software quality [4, 17,

19, 42, 43, 45]. When someone that is not the primary developer looks at a piece of code, they are

likely to find mistakes that the developer had been overlooking. Additionally, when a developer

knows that someone else will be looking at his/her code s/he tends to make sure that it is both

cleaner and better documented. Finally, the process of explaining how his/her software works can

lead to a developer to realize that the software does not actually work as believed. Second, peer

code review helps the transfer of knowledge across the members of a team [6, 7, 37, 45]. For

example, a common problem in large programs is that each developer will focus on one part of

the program to the point that there will be portions of the software that are only understood by one

developer. If that developer leaves the company or is unavailable for some reason, another team

member will have to learn that portion of the software on the fly instead of focusing on their own

development tasks. Peer code review ensures that at least two members of the team are familiar

with any given portion of the software, and likely more if the team members rotate review partners.

4.3.3 Study Design

In order to gain a greater understanding of the effectiveness of code reviews in scientific

software development, we conducted a study with a team at ORNL. As the initial stage of perform-

ing this study we presented the team members with four code review options to determine the one

that was most comfortable.
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• Formal Code Review: at least four members of the team would come together to inspect a

piece of code when the author believes it to be complete and ready for use: the author of the

code, a "reader" who guides the examination of the code, a "moderator" who is responsible for

organizing and reporting on the inspection, and some number of reviewers who critique the

code. The code is inspected on the basis of determining the criteria or requirements that must

be met to enter each process and the criteria or requirements which must be met to complete

each process. These criteria are specified in a document prepared before the review session in

order to more efficiently move through the process.

• Over-the-shoulder Code Review: the author of a piece of code that is believed to be complete

and ready for use and one or two other members of the team meet at a single machine or a

machine with a projector and go through the code together, focusing on the areas that jump

out at them or anything the author is particularly concerned about. The author guides the

discussion, explaining their reasons for making any decisions the reviewers have concerns

about.

• Remote Code Review: utilizes the same process as the "over the shoulder" peer code review,

but the people use screen sharing or a remote desktop program and communicate electroni-

cally.

• Asynchronous Code Review: the members of each team would be paired into groups of two

or three that are familiar enough with each group member’s portions of the codes to critique

each others’ code. When one of the members of the group feels a piece of code is complete

and ready for use, they send it and the prior version of the code to the reviewers who can then

use a diff to look at only the changes and respond to the author with their critiques.
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The team members unanimously chose the "over the shoulder" peer code review for a num-

ber of reasons. First, they felt that the formal code review required much too large an investment

of time and effort for the results they expected as most of the five-person team would be required

to participate. Second, they felt that the asynchronous review would not provide a significant level

of benefit over their current practices as the author would not be immediately available to explain

the goals of the piece of code and answer any questions the reviewers had. Finally, the team saw

no need for the "remote" peer code review as they were all located in the same building and could

easily meet physically.

In this study one of the authors worked with the team to instruct them on how to perform

peer code reviews and then observed the team as they performed peer code reviews. Once the

teams were able to conduct the peer code reviews on their own, the author served as a scribe

for the developers performing the code review. The scribe kept track of defects the team found,

notable comments, the number of readability defects, and the number of functional defects. The

author used this data to analyze the effectiveness of the peer code review process and extracted

findings in Section 4.3.4

4.3.4 Results

During this study, we made four primary observations:

1. After participating in two review sessions, one as the reviewer and one as the reviewee, scien-

tific developers were able to perform code reviews without further guidance by the author (a

software engineer).

2. The use of code review motivated the team to develop and adopt a uniform coding standard.
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3. Reviewers found defects that did not currently cause failures, but instead made the code less

maintainable and sustainable.

4. The developers identified understandability problems about twice as often as they identified

functionality defects.

Each of these observations show an effective improvement from the use of peer code reviews. Rel-

ative to Observation 1, these findings show that the practice of peer code reviews is easy enough for

scientists to perform without extensive formal training. Because only a brief period of training is

required, peer code reviews will be an easy process for scientists to adopt. Relative to Observation

2, it is notable that the developers adopted this practice on their own. While they were performing

the review process, they found that their brains had to "shift gears" to understand each others’ code

without additional explanation. The use of a uniform coding style is considered a best practice in

traditional software engineering because it allows the team to more easily understand the code they

are working with. Observation 3 is particularly important because the developers specifically stated

that they would not have found these problems with their current testing practices. Observation 4

supports the hypothesis that code reviews would greatly help the readability of the software.

4.3.5 Outcomes

The example of the development team at ORNL showed that peer code review was an

effective practice and that the team members were able to perform the reviews without the ongoing

help of a software engineer. Based on this success, we wanted to further increase the ability of

scientific software developers to independently perform peer code reviews and eliminate the need

for a software engineer to introduce the practice and provide structure to the review session. We

determined that a checklist that could guide peer code review would help address this goal. The
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most common obstacle to performing peer code review is focusing efforts on identifying the most

important issues in a code document. A checklist would help developers make productive use of

their review time, but is lightweight enough to not be a significant burden on their development

effort. In order to develop these checklists, we performed two steps:

1. Survey the literature for papers that describe scientific software defects that appear to be com-

mon or significant and

2. Interview experienced scientific software developers to get their opinions on the types of items

that have been most problematic in scientific software.

4.3.5.1 Literature Review

The literature review found that one of the primary difficulties facing scientific software

development was that researchers do not, as a general rule, test their programs rigorously. As

a result of this lack of rigorous testing, a number of authors speculated that the most dangerous

defects were those that did not cause the program to break, which were obvious, but rather small

defects that change the processing of data and result in significant differences in the output of the

program [14, 32, 41]. In particular, scientific software developers tended to not perform integration

testing, meaning that even if the individual pieces performed properly, the interaction of multiple

functions could produce these small defects and go undetected until the developers thought the

project was complete [15, 16, 36]. Furthermore, without continual integration testing, it is easy

for these interactions to enter the portions of the software that are considered to be "good" and

not become evident until developers try to add new functionality. The developers then frequently

waste time trying to find bugs in their piece of the software that actually exist somewhere else [15].

Additionally, a number of papers found a frequent lack of documentation in scientific soft-
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ware. Lack of documentation is a problem because, when scientists take working code from one

software package to use on another, without documentation it is easy to implement the code incor-

rectly. In one case, a biologist had created a program to compare genomes to reconstruct evolution-

ary relationships in closely related organisms, but discovered that an independent group had taken

his program and used it to look at organisms that were not as closely related as he had intended.

After the independent team had published results, he found that his program did not produce valid

results for organisms that were not within the bounds he had originally intended. Because he had

not documented his original range, the team did not realize that they had received invalid results

and published an incorrect conclusion. In another project, a team found that they had developed

their software on a Linux operating system, but when they tried to using Apple computers they re-

ceived noticeably different results because they had unintentionally tied the program to functions

that operate differently in the Linux and Apple implementations. If this had been an external team

that had attempted to utilize the project, the lack of documentation might well have resulted in the

differences not being detected and resulted in another case of published invalid results [32]. Fur-

thermore, the data formats frequently go undocumented, meaning that even though a development

team makes their software available, future developers may not be able to understand how to use

the program with their own data [24]. These findings suggest that the checklist needed questions

about the following topics:

• If the developed function actually match the intended functionality,

• How the function interacts with the other functions in the program, and

• Whether the documentation for the function matches the indented functionality.
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4.3.5.2 Interviews

The interviews were conducted at the SuperComputing 2014 Conference with attendees of

the research presentations and workshops. The interviewees were approached randomly and asked

if they would be willing to participate in a brief interview to help understand how scientific software

developers could take advantage of code reviews. The interviewees were asked the following

questions:

1. Do you usually develop code on your own or as part of a team?

2. If you develop code as part of a team, do your team members review each other’s code regu-

larly?

3. What are the most common types of problem that you find in your or your team’s code?

4. What are the most important types of problems you find in your or your team’s code?

We found that the developers primarily developed code as part of a team. Two-thirds of

the developers only developed code as part of a team and the remainder developed code both on

their own and as part of a team. Only one developer performed any type of code review, which

was peer code review. The reasons the developer gave for using peer code review was that it was a

quick process and s/he did not have the people or time to perform a more formal code review. The

most important problems that people encountered were: everybody on their team used a different

coding style, making it difficult to read the software as a whole, the ability of bugs to pass through

testing unrecognized, and functions failing when they recieve unexpected input. These problems

suggested that the checklist needed questions about coding standards and unexpected input.
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4.3.5.3 Checklist

Based on the our findings from the ORNL study, the literature survey, and the interviews,

we developed the following list of questions that should be helpful to aid scientific software devel-

opers in performing peer code reviews:

1. Does this piece of code fit our team’s coding standards?

2. Is the intended functionality of this program documented?

3. Does the functionality match this documentation?

4. What is the expected range of input for this function?

5. What happens when we provide this function input that is on or beyond the edge of expected

input?

6. What other functions use the information generated from this function?

7. Will this function work with our future plans for this software?

The first question is important because the most common problem the developers we in-

terviewed encountered was that it was hard to understand the code produced by other members of

their development team. Two of the developers interviewed specifically mentioned that everyone

on their team, as well as people who had previously been on the team, used a different program-

ming style. When these developers joined the team, this inconsistency caused them to spend much

more time becoming familiar with the code than they initially expected. The remainder of the

questions will need to be applied individually to each function that is examined. We also encoun-

tered a similar finding in our study at ORNL, when the developers realized that they would be

able to better understand each other’s code if they began using a uniform coding style. Questions

two through seven are extremely important because it was these issues with the unintended input
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that repeatedly appeared in the survey of the literature as causing the most important errors in the

results of the programs. While the fifth question did not appear in the survey of the literature, it

covers a situation that arose during the study at ORNL. One of the team members had written a

piece of software that functioned correctly, but when the team leader came across it in the review

he realized that a piece of functionality he had intended to add in the future would be much simpler

to implement with a few minor changes to the function they were reviewing.

4.3.5.4 Future Work

We plan to further evaluate this checklist to determine its current effectiveness and identify

potential improvements. In order to do this evaluation, we plan to conduct a formal case study

with a scientific software development team that does not currently use peer code review. We

will provide the team with the checklist as well as any training they require to understand the

items on the checklist. As the team uses the checklist to guide their code reviews, we will ask the

team to record the type of each defect they find as well as which checklist question (if any) led to

the detection of that defect. Additionally, we will periodically conduct surveys and interviews to

collect qualitative analysis as to the usefulness of the checklist.

4.4 Case Study 2: Testing

4.4.1 Problem and Research Objective

One of the qualities required to re-use existing software is that it be correct. The effective-

ness of testing techniques, which help ensure correctness, has been repeatedly identified as one of

the largest problems facing scientific software development [1, 15, 16, 28, 33, 34, 36, 38, 39, 41].

However, it has also been repeatedly identified that the testing performed by scientific software de-

velopers is either of limited effectiveness or executed poorly [1, 15, 16, 28, 33, 34, 36, 38, 39, 41]

In order to address this discrepancy, we formed the following hypothesis: The use of regression
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and integration testing in concert will provide a means for scientific software developers to show

that their software is “more correct.” This hypothesis is based upon the belief that these techniques

allow developers to show that they have not made anything worse by comparing to a base model

that is accepted as accurate.

4.4.2 Background

Regression testing serves to detect any failures introduced by new development on software

that has previously been determined to be correct. Regression testing can be performed at both the

system and the unit level. When tests are specified at the system level, it is possible for developers

to get more test-case reuse when they begin creating unit tests [30]. When the regression tests are

applied at the unit level, however, developers are able to detect defects earlier when they are less

expensive to repair [22, 31]. Regression testing has been found to be much simpler to perform

when joined with tools that help automate the repeated testing [35, 46].

Integration testing helps developers detect failures that arise when multiple pieces of soft-

ware interact. Integration testing focuses on the communication between different components of

the overall software project [25, 27]. Integration testing has been incorporated into ISO, CMMI,

and SPICE Automotive standards [21, 26]. As mentioned in Section 4.3.5.1, these failures are

some of the most important problems facing scientific software developers. As with regression

testing, integration testing is greatly aided by automation [23, 29, 40].

4.4.3 Development of TestSci

As we showed in Section 4.4.2, regression and integration testing have both been found to

address important defects that are introduced by the change or addition of code to existing software.

However, both testing techniques require a large amount of repetitive, time-consuming work which

makes them less appealing to developers who are not familiar with their benefits. Fortunately, both
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practices have been reported in the literature as being greatly augmented by automation. Because

we wanted to provide as much benefit to our scientific partners as possible without requiring a large

amount of additional work, we decided that it was necessary to produce a tool that would allow the

testing to be performed overnight and leave the development team with a series of simple log files

that they could quickly work through when they began work the next day.

In order to develop TestSci, we partnered with a team at ORNL. First, we interviewed the

team to determine what problems they encountered most frequently in their software development.

During this interview, we found that one of the major issues they encountered was new function-

ality failing to interact correctly with existing functionality. Based on this finding, we determined

that regression testing was one of the techniques needed to help the team address their problems.

Additionally, the project has been under development without true unit testing for many years, so

we determined that the system level regression testing would be most appropriate for the develop-

ment team. After digging deeper, the team also reported that they had issues arise when they were

attempting to incorporate pieces of software that had been written by different developers. This

problem suggests that integration testing was also an appropriate practice for the team to adopt. As

both regression and integration testing have been shown to be simplified by the use of an automated

testing tool, we decided to create TestSci, a tool that can be used to automatically test a number of

configurations of a scientific program.

TestSci consists of two parts. The first part of TestSci is a Bash script that a develeloper

can use to automate the process of running multiple configurations of the same project. This script

allows the developer to set up each configuration he/she wants to test ahead of time and then

run the script. With no further interaction, the script runs each configuration, passes the results

to the testing portion of TestSci, and stores the results from TestSci in a separate folder for each
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Figure 4.1: Error output from TestSci

0 e r r o r s i n F i l e : i n f o _ e v e c _ o u t

2 e r r o r s i n F i l e : k . o u t
E r r o r : l i n e 4 , i t em 1 i n f i l e . / / k . o u t
−5082.166495463603 != −5081.166495463603
E r r o r : l i n e 7 , i t em 1 i n f i l e . / / k . o u t
−5082.166529648014 != −5083.166529648014

0 e r r o r s i n F i l e : w_fe2 . 0

1 e r r o r s i n F i l e : w_fe2 . 1
E r r o r : l i n e 1541 , i t em 3 i n f i l e . / / w_fe2 . 1
0 .8778531269700D−13 != 0.8775531269700D−13

configuration. The testing portion of TestSci provides two major functionalities. The tool compares

the output from a run of the software it is being used to test to known good data. If a difference

in the data exceeds a threshold set in the configuration file for TestSci, then the file name, the line

number, the correct data, the new data, and the difference between the two will be saved to a log

file in order to help the user determine what went wrong. Figure 4.1 provides an example of this

output. After the error check, depending on whether or not any errors were detected, TestSci does

one of two things. If there were no errors detected, then TestSci saves a copy of that version of the

software. However, if there are errors detected, then TestSci compares the current version of the

software to the most recent saved version and gives the user a detailed report of changes, including

the file(s) the changes are in, the line numbers of the changes, and a comparison of the original

code to the new code. Figure 4.2 illustrates an example of this comparison. The primary benefit of

using TestSci is that it provides the user with information about errors and code changes that they

can then use to more quickly identify the cause of the errors. When the user takes advantage of
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Figure 4.2: Code Change output from TestSci

−−− C : / Fe2 / numpy−1 . 9 . 1 / numpy / p o l y n o m i a l / chebyshev . py 3
+++ C : / Fe2 / numpy−1 . 9 . 2 / numpy / p o l y n o m i a l / chebyshev . py
@@ −280 ,7 +280 ,7 @@

" " "
n = l e n ( z s ) / / 2

− ns = np . a r r a y ([−1 , 0 , 1 ] , F type = zs . d t y p e )
+ ns = np . a r r a y ([−1 , 0 , 1 ] , d t y p e = zs . d t y p e )

z s *= np . a r a n g e (−n , n +1)*2
d , r = _ z s e r i e s _ d i v ( zs , ns )
r e t u r n d

−−− C : / Fe2 / numpy−1 . 9 . 1 / numpy / p o l y n o m i a l / h e r m i t e _ e . py 3
+++ C : / Fe2 / numpy−1 . 9 . 2 / numpy / p o l y n o m i a l / h e r m i t e _ e . py
@@ −291 ,7 +291 ,7 @@

[ r o o t s ] = pu . a s _ s e r i e s ( [ r o o t s ] , t r i m = F a l s e )
r o o t s . s o r t ( )
p = [ h e r m e l i n e (− r , 1 ) f o r r i n r o o t s ]

− n = l e n ( p +1)
+ n = l e n ( p )

w h i l e n > 1 :
m, r = divmod ( n , 2 )
tmp = [ hermemul ( p [ i ] , p [ i +m] ) f o r i i n r a n g e (m) ]

@@ −346 ,7 +346 ,7 @@
r e t = c1

e l s e :
c2 [ : c1 . s i z e ] += c1

− r e t = c2 −1
+ r e t = c2

r e t u r n pu . t r i m s e q ( r e t )
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this information, they can spend less time trying to find the errors manually and more time fixing

errors and working on new features.

4.4.4 Proof-of-Concept Example

In order to show that TestSci was effective at its goal of aiding the developer in performing

integration and regression testing, we used output given to us by our partners to provide a real-

world test of TestSci’s ability to decrease the time that it takes to detect errors in the output of

changed code. In order to perform this test, we seeded the output files with 3 errors and used

TestSci to generate an error log. The original output consisted of 3096 lines of text, while the error

log from TestSci is completely contained in figure 4.1 In this somewhat common case, that errors

would only appear on a few lines of the output, the reviewer would have had to work through

0.45% as much text to use the errors in the log file than if they were manually inspecting the output

files.

To test the change-detection functionality of TestSci, we similarly seeded the polynomial

library of numpy with errors. In this case, a manual search for the changes would require going

through 13,083 lines of code while the change log from TestSci is contained in Figure 4.2. The

developers would then have to work through 0.27% as much text to find the changes than if they

were manually inspecting the code files. While this is a best-case scenario, regular use of the tool

would keep the change-set relatively small as compared to the overall size of the software.

The much lower amount of information to process shows that using TestSci will prove to

be much more efficient than the manual process previously used by our partners. When used on a

regular basis, TestSci will provide the developers with a concise report containing a parsed version

of the output they already had that is much easier for them to use to quickly detect the presence of

errors. The addition of the code change information will provide two functional use case options,
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depending on the team’s development methodology. First, it allows a single developer to easily go

through the changes made by the other developers on the team in order to identify which change is

responsible for the error in output. Second, the team leader can use the code change information to

divide this inspection among the members of the team more evenly and guide the team members

to the locations that the errors could have entered the software. The primary use of TestSci is

to aid the developer in performing integration testing by simplifying the process of finding the

errors introduced by the interaction between otherwise tested components. TestSci also provides

regression testing support by automatically saving the version of the code that produced correct

results. The change analysis created based on this information helps the developer identify whether

the problem was introduced by new functionality or a change in existing functionality.

4.4.5 Future Work

In addition to this proof-of-concept, we plan to validate in the real world context of our

partners at ORNL. In order to perform this further validation, we created a version of TestSci with

a script tailored to their project and provided it for their use. Once they have used TestSci for an

extended period of time (1 or 2 months), we will conduct another interview to gather the following

data:

1. How much extra work was required to use TestSci in their normal process of software devel-

opment,

2. How much TestSci decreased the time spent analyzing the data output,

3. How much TestSci helped the process of identifying changed code that modified the original

functionality, and
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4. What additional functionality would help TestSci be more useful for their development pro-

cess.

Based on this additional input, we plan to determine what did and did not work with the current

iteration of TestSci and improve it for release as an open-source tool for scientific software devel-

opers.

4.5 Summary and Future Work

In this paper we presented a pair of examples covering the process of peer code review and

the development and evaluation of TestSci, a semi-automated testing tool to aid scientific software

developers in their development process. While addressing the peer code review example, we

presented findings from teaching a team of scientific software developers to take advantage of the

peer code review process. We found that scientific software developers were able to perform peer

code review on their own after two sessions with the aid of a software engineer, develop a uniform

coding standards, find defects that would cause errors in the future, and find a significant number of

readability defects in addition to functional defects. Based on these findings, as well as a literature

survey and interviews with developers, we presented a checklist that can be used to help scientific

software developers learn to perform effective peer code review without the assistance of software

engineers.

We presented a preliminary evaluation of the effectiveness of TestSci. We found that the

output produced by TestSci was much easier to navigate and understand than the raw data that had

been previously used by our partners. A potential threat to the validity of this evaluation is that

the evaluation was performed by one of the authors and only looked at the quantitative data of

lines of output. Because the errors were injected, we cannot say how much effort was saved by
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the use of the tool. In order to address this threat we plan to have the team we partnered with to

evaluate TestSci independently in the course of their normal development, improve the tool based

on their findings, and release it open-sourced to the software engineering and scientific software

development communities.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

The dissertation shows that, while scientific software developers recognize they would ben-

efit from using software engineering practices, practices that support verification & validation and

testing have not been widely adopted. This conclusion is important because these areas have been

repeatedly identified by both scientists and software engineers as some of the most difficult chal-

lenges facing scientific software development. Additionally, this dissertation showed that many

scientific software developers have adopted practices that approximate the agile development ap-

proach, even when they have no formal training in that approach. Furthermore, this dissertation

shows that scientific software developers were generally unable to evaluate their overall knowl-

edge of software engineering as shown by their lack of knowledge of specific software engineering

practices. In particular, scientists are unfamiliar with the testing practices that would help address

the challenges of verification & validation. Finally, the dissertation shows that the software engi-

neering practices of peer code reviews, integration testing, and regression testing are effective at

addressing the issues of maintainability and readability in scientific software development.

5.2 Contributions

The primary contributions of this dissertation follow. First, I found that, while scientific

software developers recognize they would benefit from using software engineering practices, prac-

tices that support verification & validation and testing have not been widely adopted. However,
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the difficulties of validating, verifying, and testing their software are widely viewed as one of the

most important problems facing scientific software developers. Additionally, I created a list of

the software engineering practices used by scientific software developers, provided an analysis of

the effectiveness of those practices as well as an analysis of the evidence used to evaluate this

effectiveness. Furthermore, I found that scientific software developers were generally unable to

evaluate their overall knowledge of software engineering as shown by their knowledge of specific

software engineering practices. In particular, I found that scientists were not knowledgeable about

a variety of common software testing practices. This observation is important because it means

that scientific software developers are not familiar with the practices that would serve to solve the

problems with verification & validation shown above. Finally, I showed that the software engi-

neering practices of peer code reviews, integration testing, and regression testing are effective at

addressing the issues of maintainability and readability in scientific software development.

5.3 Future Work

In addition to the work performed in this dissertation, I have two more studies planned. The

first study is to provide the checklist generated in the work described in Chapter 4 to a group of

scientific software developers that is unfamiliar with the process of performing peer code reviews.

I will have the team use the checklist to guide their code review process for two months and then

have the team members complete a survey to evaluate the effectiveness of the code review process.

Additionally, I will have the team participate in an interview to determine how the checklist could

be improved and perform another iteration of the survey. The second study is to conduct a more

formal user study to validate the SciTest tool also described in Chapter 4. Based on the results

of this user study, I plan to revise SciTest and release it as an open-source project to benefit the

scientific software development community.
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5.4 Publications

The major work for this dissertation is being published in journals as follows: The litera-

ture review covered in Chapter 2, titled “Claims About the Use of Software Engineering Practices

in Science: A Systematic Literature Review,” has been submitted to Information Software & Tech-

nology and was returned for a major revision, to be submitted shortly after completion of the

dissertation. The paper based on the surveys covered in Chapter 3, titled “What Scientists and

Engineers Know About Software Engineering: A Survey,” is under review at the Empirical Soft-

ware Engineering Journal. The paper based on the case studies presented in Chapter 4, will be

submitted to the Empirical Software Engineering Journal.

The work covered by this dissertation has also been published in the following venues.

1. Self-Perceptions about Software Engineering: A Survey of Scientists and Engineers in the

Computing in Science and Engineering magazine[6],

2. The Relationship between Development Problems and Use of Software Engineering Practices

in Computational Science & Engineering: A Survey at the First Workshop on Maintainable

software Practices in e-Science[12], and

3. What Software Engineering Can Do for Computational Science and Engineering at the IEEE

Symposium on Visual Languages and Human-Centric Computing[11].
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